Decoupling between climate and tectonics, transform the elevation of earth surface regionally by denudation and displacement of land. To extract the tectonic footprints on morphology of landform, geormophometry is wid...Decoupling between climate and tectonics, transform the elevation of earth surface regionally by denudation and displacement of land. To extract the tectonic footprints on morphology of landform, geormophometry is widely accepted tool due to visible responses in Drainage architecture to an intense tectonic environment. The present morphology of Yamuna basin in the Garhwal Himalaya, India is a result of continuing crustal deformation;erosion and deposition in the area. The drainage system and geomorphic expression of topography have been significantly influenced by active tectonics in this basin. In present study, for numerical modelling to detect the influence of tectonic signals on landform, we used morphotectonic parameters, to gradient index (SL), valley floor height to width ratio (Vf), asymmetry factor (Af), basin shape index (BS) and hypsometric integral (HI), extracted from SRTM DEM with resolution of 30 m. All these morphotectonic parameters are integrated to produce an index of relative active tectonics (IRAT). The Yamuna basin is classified into three groups based on IRAT, very high (<2.0);moderate (2.0 - 2.25) and low (>2.25) based on the degree of tectonic activity. Result shows approx. 56% of Yamuna basin experience high tectonic activity. This along strike deformation pattern pronouncedly emulates subsurface geometry based tectonic model.展开更多
文摘Decoupling between climate and tectonics, transform the elevation of earth surface regionally by denudation and displacement of land. To extract the tectonic footprints on morphology of landform, geormophometry is widely accepted tool due to visible responses in Drainage architecture to an intense tectonic environment. The present morphology of Yamuna basin in the Garhwal Himalaya, India is a result of continuing crustal deformation;erosion and deposition in the area. The drainage system and geomorphic expression of topography have been significantly influenced by active tectonics in this basin. In present study, for numerical modelling to detect the influence of tectonic signals on landform, we used morphotectonic parameters, to gradient index (SL), valley floor height to width ratio (Vf), asymmetry factor (Af), basin shape index (BS) and hypsometric integral (HI), extracted from SRTM DEM with resolution of 30 m. All these morphotectonic parameters are integrated to produce an index of relative active tectonics (IRAT). The Yamuna basin is classified into three groups based on IRAT, very high (<2.0);moderate (2.0 - 2.25) and low (>2.25) based on the degree of tectonic activity. Result shows approx. 56% of Yamuna basin experience high tectonic activity. This along strike deformation pattern pronouncedly emulates subsurface geometry based tectonic model.