The study of sulfur hexafluoride(SF6) discharge is vital for its application in gas-insulated equipment. Direct current partial discharge(PD) may cause SF6 decomposition, and the decomposed products of SF6, such as F ...The study of sulfur hexafluoride(SF6) discharge is vital for its application in gas-insulated equipment. Direct current partial discharge(PD) may cause SF6 decomposition, and the decomposed products of SF6, such as F atoms, play a dominant role in the breakdown of insulation systems. In this study, the PD caused by metal protrusion defects is simulated by a needle-plate electrode using pulsed high voltage in SF6/Ar mixtures. The spatial and temporal characteristics of SF6/Ar plasma are analyzed by measuring the emission spectra of F and Ar atoms, which are important for understanding the characteristics of PD. The spatial resolved results show that both F and Ar atom spectral intensities increase first from the plate anode to the needle and then decrease under the conditions of a background pressure of400 Pa, peak voltage of-1000 V, frequency of 2 kHz, pulse width of 60 μs, and electrode gap of 5-9 mm. However, the distribution characteristics of F and Ar are significantly different. The temporal distribution results show that the spectral intensity of Ar decreasesfirst and then increases slowly, while the spectral intensity of F increases slowly for the duration of the pulsed discharge at the electrode gap of 5 mm and the pulse width of40-80 μs.展开更多
An experimental setup has been designed and realized in order to optimize the characteristics of laser-induced breakdown spectroscopy system working in various pressure environments. An approach combined the normaliza...An experimental setup has been designed and realized in order to optimize the characteristics of laser-induced breakdown spectroscopy system working in various pressure environments. An approach combined the normalization methods with the partial least squares(PLS) method are developed for quantitative analysis of molybdenum(Mo) element in the multi-component alloy,which is the first wall material in the Experimental Advanced Superconducting Tokamak. In this study, the different spectral normalization methods(total spectral area normalization,background normalization, and reference line normalization) are investigated for reducing the uncertainty and improving the accuracy of spectral measurement. The results indicates that the approach of PLS based on inter-element interference is significantly better than the conventional PLS methods as well as the univariate linear methods in the various pressure for molybdenum element analysis.展开更多
Sinomanglietia glauca is a critically endangered species described from Jiangxi Province in the 1990s. Recently two populations were discovered from Yongshun County of west Hunan Province, about 450 km away from those...Sinomanglietia glauca is a critically endangered species described from Jiangxi Province in the 1990s. Recently two populations were discovered from Yongshun County of west Hunan Province, about 450 km away from those in Jiangxi. Because of the new findings and the poor reproducibility inherent to RAPD and ISSR markers of previous studies, the population structure of this rare species was reanalyzed with chloroplast PCR-SSCP (single-stranded conformation polymorphism), including all of four recorded populations. The results showed that two distinct haplotypes characterized Jiangxi and Hunan populations separately, with no genetic variation occurring within regions. We postulated that this surprising pattern might result from habitat fragmenta- tion and demographic bottlenecks during and/or after the Quaternary glaciation. On the basis of the pronounced genetic structure, two evolutionarily significant units (ESUs) were recommended for effective conservation of S. glauca.展开更多
Fuel retention measurement on plasma-facing components is an active field of study in magnetic confinement nuclear fusion devices.The laser-induced breakdown spectroscopy(LIBS)diagnostic method has been well demonstra...Fuel retention measurement on plasma-facing components is an active field of study in magnetic confinement nuclear fusion devices.The laser-induced breakdown spectroscopy(LIBS)diagnostic method has been well demonstrated to detect the elemental distribution in PFCs.In this work,an upgraded co-axis LIBS system based on a linear fiber bundle collection system has been developed to measure the hydrogen(H) retention on a tantalum(Ta) sample under a vacuum condition.The spatial resolution measurement of the different positions of the LIBS plasma can be achieved simultaneously with varying delay times.The temporal and spatial evolution results of LIBS plasma emission show that the H plasma observably expands from the delay times of 0-200 ns.The diameter of Ta plasma is about 6 mm which is much less than the size of H plasma after 200 ns.The difference in the temporal and spatial evolution behaviors between H plasma and Ta plasma is due to the great difference in the atomic mass of H and Ta.The depth profile result shows that H retention mainly exists on the surface of the sample.The temporal and spatial evolution behaviors of the electron excited temperature are consistent with that of the Ta emission.The result will further improve the understanding of the evolution of the dynamics of LIBS plasma and optimize the current collection system of in situ LIBS in fusion devices.展开更多
The complex nature of laser-material interaction causes non-stoichiometric ablation of alloy samples.This is attributed to matrix effect, which reduces analyzing capability. To address this issue, the analytical perfo...The complex nature of laser-material interaction causes non-stoichiometric ablation of alloy samples.This is attributed to matrix effect, which reduces analyzing capability. To address this issue, the analytical performance of three different normalization methods, namely normalization with background, internal normalization and three point smoothing techniques at different parameter settings is studied for quantification of Ag and Zn by Laser induced breakdown spectroscopy(LIBS).The LIBS spectra of five known concentration of silver zinc binary composites have been investigated at various laser irradiances(LIs). Calibration curves for both Ag(I) line(4d^(10)5s^2S_(1/2)→4d^(10)5p^2P_(1/2) at 338.28 nm) and Zn(I) line(4s5s^3S_1→4s4p^3P_2 at 481.053 nm) have been determined at LI of 5.86?×?10^(10)W cm^(-2). Slopes of these calibration curves provide the valuation of matrix effect in the Ag–Zn composites. With careful sample preparation and normalization after smoothing at optimum parameter setting(OPS), the minimization of sample matrix effect has been successfully achieved. A good linearity has been obtained in Ag and Zn calibration curve at OPS when normalized the whole area of spectrum after smoothing and the obtained coefficients of determination values were R^2?=?0.995 and 0.998 closer to 1. The results of matrix effect have been further verified by analysis of plasma parameters. Both plasma parameters showed no change with varying concentration at OPS. However, at high concentration of Ag, the observed significant changes in both plasma parameters at common parameter setting PS-1 and PS-2 were the gesture of matrix effect. In our case, the better analytical results were obtained at smoothing function with optimized parameter setting that indicates it is more efficient than normalization with background and internal normalization method.展开更多
Tungsten(W)is an important material in tokamak walls and divertors.The W ion charge state distribution and the dynamic behavior of ions play important roles in the investigation of plasma–wall interactions using lase...Tungsten(W)is an important material in tokamak walls and divertors.The W ion charge state distribution and the dynamic behavior of ions play important roles in the investigation of plasma–wall interactions using laser-ablation-based diagnostics such as laser-induced breakdown spectroscopy and laser-induced ablation spectroscopy.In this work,we investigate the temporal and spatial evolutions of differently charged ions in a nanosecond-laser-produced W plasma in vacuum using time-of-flight mass spectroscopy.Ions with different charge states from 1 to 7(W+to W7+)are all observed.The temporal evolutions of the differently charged ions show that ions with higher charge states have higher velocities,indicating that space separation occurs between the differently charged ion groups.Spatially-resolved mass spectroscopy measurements further demonstrate the separation phenomenon.The temporal profile can be accurately fitted by a shifted Maxwell–Boltzmann distribution,and the velocities of the differently charged ions are also obtained from the fittings.It is found that the ion velocities increase continuously from the measured position of 0.75 cm to 2.25 cm away from the target surface,which indicates that the acceleration process lasts through the period of plasma expansion.The acceleration and space separation of the differently charged ions confirm that there is a dynamic plasma sheath in the laser-produced plasma,which provides essential information for the theoretical laser-ablation model with plasma formation and expansion.展开更多
文摘目的建立预测2.0~3.0 cm高CT值肾结石老年患者微创经皮肾镜取石术(MPCNL)后发生全身炎症反应综合征(SIRS)风险的列线图模型。方法选取2018年1月-2020年1月于该院就诊的CT值>1200 Hu的肾结石老年患者336例,根据MPCNL术后是否发生SIRS,分为SIRS组(76例)和非SIRS组(260例)。比较两组患者临床资料,行单因素和多因素Logistic回归分析,获得MPCNL术后发生SIRS的独立危险因素,并建立列线图预测模型,采用受试者操作特征曲线(ROC曲线)判定该模型的预测价值。结果两组患者性别、年龄、结石位置、结石类型、糖尿病史、术前尿培养阳性、患侧泌尿系统手术史、术中肾盂高压、结石表面积、手术时间和术后2 h中性粒细胞/淋巴细胞比值(NLR)等临床指标比较,差异有统计学意义(P<0.05),经单因素分析,上述因素为潜在危险因素(P<0.05)。进一步进行多元Logistic回归分析,结果发现:女性、鹿角结石或肾盏多发结石、糖尿病史、术前尿培养阳性、手术时间、术后2 h NLR是2.0~3.0 cm高CT值肾结石老年患者MPCNL术后发生SIRS的独立危险因素(P<0.05)。列线图模型预测术后发生SIRS风险的ROC曲线下面积(AUC)为0.860(95%CI:0.809~0.911),敏感度84.21%,特异度83.08%。结论女性、鹿角结石或肾盏多发结石、糖尿病史、术前尿培养阳性、手术时间、术后2 h NLR是2.0~3.0 cm高CT值肾结石老年患者MPCNL术后发生SIRS的独立危险因素,列线图模型可以应用于术后SIRS发生风险的预测。
基金supported by National Natural Science Foundation of China (Nos. 11605023, 11805028, and 11705020)the National Key R&D Program of China (No. 2017YFE0301300)+1 种基金the China Postdoctoral Science Foundation (Nos. 2017T100172 and 2016M591423)the Fundamental Research Funds for the Central Universities (Nos. DUT17RC(4)53 and DUT18LK38)
文摘The study of sulfur hexafluoride(SF6) discharge is vital for its application in gas-insulated equipment. Direct current partial discharge(PD) may cause SF6 decomposition, and the decomposed products of SF6, such as F atoms, play a dominant role in the breakdown of insulation systems. In this study, the PD caused by metal protrusion defects is simulated by a needle-plate electrode using pulsed high voltage in SF6/Ar mixtures. The spatial and temporal characteristics of SF6/Ar plasma are analyzed by measuring the emission spectra of F and Ar atoms, which are important for understanding the characteristics of PD. The spatial resolved results show that both F and Ar atom spectral intensities increase first from the plate anode to the needle and then decrease under the conditions of a background pressure of400 Pa, peak voltage of-1000 V, frequency of 2 kHz, pulse width of 60 μs, and electrode gap of 5-9 mm. However, the distribution characteristics of F and Ar are significantly different. The temporal distribution results show that the spectral intensity of Ar decreasesfirst and then increases slowly, while the spectral intensity of F increases slowly for the duration of the pulsed discharge at the electrode gap of 5 mm and the pulse width of40-80 μs.
基金supported by the National Magnetic Confinement Fusion Science Program of China (No. 2017YFE0301304)National Natural Science Foundation of China (Nos. 11 475 039, 11 605 023, 11 705 020)+2 种基金China Postdoctoral Science Foundation (Nos. 2016M591423, 2017T100172, 2018M630285)the Fundamental Research Funds for the Central Universities (Nos. DUT15RC(3)072, DUT17RC(4)53, DUT18LK38)Liaoning Provincial Natural Science Foundation of China (No. 20 170 540 153)
文摘An experimental setup has been designed and realized in order to optimize the characteristics of laser-induced breakdown spectroscopy system working in various pressure environments. An approach combined the normalization methods with the partial least squares(PLS) method are developed for quantitative analysis of molybdenum(Mo) element in the multi-component alloy,which is the first wall material in the Experimental Advanced Superconducting Tokamak. In this study, the different spectral normalization methods(total spectral area normalization,background normalization, and reference line normalization) are investigated for reducing the uncertainty and improving the accuracy of spectral measurement. The results indicates that the approach of PLS based on inter-element interference is significantly better than the conventional PLS methods as well as the univariate linear methods in the various pressure for molybdenum element analysis.
基金funded by the Foundation from Education Department of Jiangxi Province (2007-149)the National Natural Science Foundation of China (30460020)the Cultivation Programs for Young Scientists of Jiangxi Province (2008DQ01500)
文摘Sinomanglietia glauca is a critically endangered species described from Jiangxi Province in the 1990s. Recently two populations were discovered from Yongshun County of west Hunan Province, about 450 km away from those in Jiangxi. Because of the new findings and the poor reproducibility inherent to RAPD and ISSR markers of previous studies, the population structure of this rare species was reanalyzed with chloroplast PCR-SSCP (single-stranded conformation polymorphism), including all of four recorded populations. The results showed that two distinct haplotypes characterized Jiangxi and Hunan populations separately, with no genetic variation occurring within regions. We postulated that this surprising pattern might result from habitat fragmenta- tion and demographic bottlenecks during and/or after the Quaternary glaciation. On the basis of the pronounced genetic structure, two evolutionarily significant units (ESUs) were recommended for effective conservation of S. glauca.
基金supported by National Key R&D Program of China(No.2017TFE0301300)the National Natural Science Foundation of China(Nos.11605023,11805028,11861131010)the China Postdoctoral Science Foundation(Nos.2017T100172,2016M591423)。
文摘Fuel retention measurement on plasma-facing components is an active field of study in magnetic confinement nuclear fusion devices.The laser-induced breakdown spectroscopy(LIBS)diagnostic method has been well demonstrated to detect the elemental distribution in PFCs.In this work,an upgraded co-axis LIBS system based on a linear fiber bundle collection system has been developed to measure the hydrogen(H) retention on a tantalum(Ta) sample under a vacuum condition.The spatial resolution measurement of the different positions of the LIBS plasma can be achieved simultaneously with varying delay times.The temporal and spatial evolution results of LIBS plasma emission show that the H plasma observably expands from the delay times of 0-200 ns.The diameter of Ta plasma is about 6 mm which is much less than the size of H plasma after 200 ns.The difference in the temporal and spatial evolution behaviors between H plasma and Ta plasma is due to the great difference in the atomic mass of H and Ta.The depth profile result shows that H retention mainly exists on the surface of the sample.The temporal and spatial evolution behaviors of the electron excited temperature are consistent with that of the Ta emission.The result will further improve the understanding of the evolution of the dynamics of LIBS plasma and optimize the current collection system of in situ LIBS in fusion devices.
基金supported by National Natural Science Foundation of China (Nos. 11475039, 11705020, 11605023)Liaoning Provincial Natural Science Foundation of China (No. 20170540153)
文摘The complex nature of laser-material interaction causes non-stoichiometric ablation of alloy samples.This is attributed to matrix effect, which reduces analyzing capability. To address this issue, the analytical performance of three different normalization methods, namely normalization with background, internal normalization and three point smoothing techniques at different parameter settings is studied for quantification of Ag and Zn by Laser induced breakdown spectroscopy(LIBS).The LIBS spectra of five known concentration of silver zinc binary composites have been investigated at various laser irradiances(LIs). Calibration curves for both Ag(I) line(4d^(10)5s^2S_(1/2)→4d^(10)5p^2P_(1/2) at 338.28 nm) and Zn(I) line(4s5s^3S_1→4s4p^3P_2 at 481.053 nm) have been determined at LI of 5.86?×?10^(10)W cm^(-2). Slopes of these calibration curves provide the valuation of matrix effect in the Ag–Zn composites. With careful sample preparation and normalization after smoothing at optimum parameter setting(OPS), the minimization of sample matrix effect has been successfully achieved. A good linearity has been obtained in Ag and Zn calibration curve at OPS when normalized the whole area of spectrum after smoothing and the obtained coefficients of determination values were R^2?=?0.995 and 0.998 closer to 1. The results of matrix effect have been further verified by analysis of plasma parameters. Both plasma parameters showed no change with varying concentration at OPS. However, at high concentration of Ag, the observed significant changes in both plasma parameters at common parameter setting PS-1 and PS-2 were the gesture of matrix effect. In our case, the better analytical results were obtained at smoothing function with optimized parameter setting that indicates it is more efficient than normalization with background and internal normalization method.
基金supported by the National Key R&D Program of China(No.2017YFE0301304)National Natural Science Foundation of China(No.12005034)the China Postdoctoral Science Foundation(No.2019M661087)supported by the US Department of Energy,Office of Defense Nuclear Nonproliferation Research and Development,under contract number DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory。
文摘Tungsten(W)is an important material in tokamak walls and divertors.The W ion charge state distribution and the dynamic behavior of ions play important roles in the investigation of plasma–wall interactions using laser-ablation-based diagnostics such as laser-induced breakdown spectroscopy and laser-induced ablation spectroscopy.In this work,we investigate the temporal and spatial evolutions of differently charged ions in a nanosecond-laser-produced W plasma in vacuum using time-of-flight mass spectroscopy.Ions with different charge states from 1 to 7(W+to W7+)are all observed.The temporal evolutions of the differently charged ions show that ions with higher charge states have higher velocities,indicating that space separation occurs between the differently charged ion groups.Spatially-resolved mass spectroscopy measurements further demonstrate the separation phenomenon.The temporal profile can be accurately fitted by a shifted Maxwell–Boltzmann distribution,and the velocities of the differently charged ions are also obtained from the fittings.It is found that the ion velocities increase continuously from the measured position of 0.75 cm to 2.25 cm away from the target surface,which indicates that the acceleration process lasts through the period of plasma expansion.The acceleration and space separation of the differently charged ions confirm that there is a dynamic plasma sheath in the laser-produced plasma,which provides essential information for the theoretical laser-ablation model with plasma formation and expansion.