Alpine grassland occupies two-thirds of the Qinghai-Tibetan Plateau (QTP). It is vital to project changes of this vulnerable ecosystem under different climate change scenarios before taking any mitigation or adaptatio...Alpine grassland occupies two-thirds of the Qinghai-Tibetan Plateau (QTP). It is vital to project changes of this vulnerable ecosystem under different climate change scenarios before taking any mitigation or adaptation measures. In this study, we used a process-based ecosystem model, driven with output from global circulation models under different Representative Concentration Pathways (RCPs), to project the carbon dynamics of alpine grassland. The results showed the following: 1) Vegetation carbon (C) on the QTP increased by 22—38 gC m^-2 during periods of 1.5 and 2 ℃ warming under different RCPs when compared to the baseline period (1981—2006), while soil C increased by 85—122 gC m^-2. 2) The increases of vegetation C and soil C at the period of 1.5 ℃ warming were about 15 gC m^-2 and 40 gC m^-2 smaller than those at the period of 2 ℃ warming, respectively;increase of C was greater for alpine meadow than for alpine steppe. 3) Precipitation, radiation, and permafrost changed significantly and showed heterogeneous spatial patterns, and caused heterogeneous response of C dynamics. For alpine meadow in regions transformed from permafrost to seasonally frozen soil with medium annual precipitation (200—400 mm), vegetation C and net primary production decreased by 18.7 gC m-2 and 3.1 gC m^-2 per year during 2 °C warming under RCP 4.5, respectively. This decrease can be attributed to the disappearing impermeable permafrost. Different from previous studies that indicated an unfavorable response of alpine grassland to climate warming, this study showed a relatively favorable response, which is mainly attributed to C 0 2 fertilization.展开更多
Global warming triggers shrinking and thinning of glaciers worldwide,with potentially severe implications for human society.However,regional differences in glacier retreat and its relationship with climatic characteri...Global warming triggers shrinking and thinning of glaciers worldwide,with potentially severe implications for human society.However,regional differences in glacier retreat and its relationship with climatic characteristics have not been conclusively demonstrated.In this study,regional changes in global glaciers based on two primary features,area change and mass balance,were investigated on the basis of data collected from published research on glacier changes.Results show that during the period 1980—2015,the rate of global glacier area shrinkage was 0.18%per year and that of global glacier mass loss was 0.25 m w.e.per year.Retreat of glaciers located at low and middle latitudes was characterized by severe area shrinkage and mass loss.Correspondingly,in the Arctic,deglaciation was characterized by ice thinning due to a low area reduction but relatively high mass loss rate.However,glaciers in high southern latitudes were in a relatively stable status.High Mountain Asia exhibited the lowest rate of area shrinkage and mass loss among glaciers located at low and middle latitudes,and a slower rate of mass loss compared with the global average.Glaciers in the Tropical Andes exhibited the fastest rate of glacier area shrinkage(—1.6%per year),whereas Antarctic and Subantarctic glaciers showed the lowest rate(—0.11%per year).For mass balance,the most negative occurred at Southern Andes(—0.81 m w.e.per year),followed by Alaska(-0.74 m w.e.per year).Only the Antarctic and Subantarctic experienced small mass gain(0.04 m w.e.per year).High levels of correlation are found between the rates of glacier retreat and annual average temperature and annual total precipitation instead of their trends.The variability of the surface climate conditions in the glacier environment plays a key role in driving these regional differences in global glacier retreat.展开更多
Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951-1999, the aridity index is calculated in this paper. According to the aridity index, the cli...Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951-1999, the aridity index is calculated in this paper. According to the aridity index, the climatic regions in China are classified into three types, namely, arid region, semi-arid region and humid region. Dry and wet climate boundaries in China fluctuate markedly and differentiate greatly in each region in the past 50 years. The fluctuation amplitudes are 20-400 km in Northeast China, 40-400 km in North China, 30-350 km in the eastern part of Northwest China and 40-370 km in Southwest China. Before the 1980s (including 1980), the climate tended to be dry in Northeast China and North China, to be wet in the eastern part of Northwest China and very wet in Southwest China. Since the 1990s there have been dry signs in Southwest China, the eastern part of Northwest China and North China. The climate becomes wetter in Northeast China. Semi-arid region is the transitional zone between humid and arid regions, the monsoon edge belt in China, and the susceptible region of environmental evolution. At the end of the 1960s dry and wet climate in China witnessed abrupt changes, changing wetness into dryness. Dry and wet climate boundaries show the fluctuation characteristics of the whole shifts and the opposite fluctuations of eastward, westward, southward and northward directions. The fluctuations of climatic boundaries and the dry and wet variations of climate have distinctive interdecadal features.展开更多
Mountain glaciers in China are an important water source for both China and adjoining countries, and therefore their adaptation to glacier change is crucial in relation to maintaining populations. This study aims to i...Mountain glaciers in China are an important water source for both China and adjoining countries, and therefore their adaptation to glacier change is crucial in relation to maintaining populations. This study aims to improve our understanding of glacial vulnerability to climate change to establish adaptation strategies. A glacial numerical model is developed using spatial principle component analysis (SPCA) supported by remote sensing (RS) and geographical information system (GIS) technologies. The model contains nine factors--slope, aspect, hillshade, elevation a.s.l., air temperature, precipitation, glacial area change percentage, glacial type and glacial area, describing topography, climate, and glacier characteristics. The vulnerability of glaciers to climate change is evaluated during the period of 1961-2007 on a regional scale, and in the 2030s and 2050s based on projections of air temperature and precipitation changes under the IPCC RCP6.0 scenario and of glacier change in the 21st century. Glacial vulnerability is graded into five levels: potential, light, medial, heavy, and very heavy, using natural breaks classification (NBC). The spatial distribution of glacial vulnerability and its temporal changes in the 21st century for the RCP6.0 scenario are analyzed, and the factors influencing vulnerability are discussed. Results show that mountain glaciers in China are very vulnerable to climate change, and 41.2% of glacial areas fall into the levels of heavy and very heavy vulnerability in the period 1961-2007. This is mainly explained by topographical exposure and the high sensitivity of glaciers to climate change. Trends of glacial vulnerability are projected to decline in the 2030s and 2050s, but a declining trend is still high in some regions. In addition to topographical factors, variation in precipitation in the 2030s and 2050s is found to be crucial.展开更多
To evaluate isotopic tracers at natural abundances by providing basic isotope data of the hydrological investigations and assessing the impacts of different factors on the water cycle, a total of 197 water samples wer...To evaluate isotopic tracers at natural abundances by providing basic isotope data of the hydrological investigations and assessing the impacts of different factors on the water cycle, a total of 197 water samples were collected from the Laohugou Glacial catchment in the Shule River basin northwestern China during the 2013 ablation seasons and analyzed their H- and O-isotope composition. The results showed that the isotopic composition of precipitation in the Qilianshan Station in the Laohugou Glacial catchment was remarkable variability. Correspondingly, a higher slope of δ180-δD diagram, with an average of 8.74, is obtained based on the precipitation samples collected on the Glacier No.la, mainly attributed to the lower temperature on the glacier surface. Because of percolation and elution, the bottom of the firn the isotopic composition at is nearly steady. The 6180 /altitude gradients for precipitation and melt water were -o.37%o/100 m and -o.34%o/100 m, respectively Exposed to the air and influenced by strong ablation and evaporation, the isotopic values and the 6180 vs 6D diagram of the glacial surface ice show no altitudinal effect, indicating that glacier ice has the similar origins with the firn. The variation of isotopic composition in the melt water, varying from -l0.7‰ to -16.9‰ (8180) and from -61.1%o to -122.1%o (6D) indicates the recharging of snowmelt and glacial ice melt water produced at different altitudes. With a mean value of -13.3‰ for 8180 and -89.7‰ for 8D, the isotopic composition of the stream water is much closer to the melt water, indicating that stream water is mainly recharged by the ablation water. Our results of the stable isotopic compositions in natural water in the Laohugou Glacial catchment indicate the fractionations and the smoothing fluctuations of the stable isotopes during evaporation, infiltration and mixture.展开更多
By using a degree-day based distributed hydrological model, regimes of glacial runoff from the Koxkar glacier during 2007-2011 are simulated, and variations and characteristics of major hydrological components are dis...By using a degree-day based distributed hydrological model, regimes of glacial runoff from the Koxkar glacier during 2007-2011 are simulated, and variations and characteristics of major hydrological components are discussed. The results show that the meltwater runoff contributes 67.4%, of the proglacial discharge, out of which snowmelt, clean ice melting, buried-ice ablation and ice-cliff backwasting account for 22.4%, 21.9%, 17.9% and 5.3% of the total melt runoff, respectively. Rainfall runoff is significant in mid-latitude glacierized mountain areas like Tianshan and Karakorum. In the Koxkar glacier catchment, about 11.5% of stream water is initiated from liquid precipitation. Spatial distributions for each glacial runoff component reveal the importance of climatic gradients, local topography and morphology on glacial runoff generation, and temporal variations of these components is closely related to the annual cycle of catchment meteorology and glacier storage. Four stages are recognized in the seasonal variations of glacier storage, reflecting changes in meltwater yields, meteorological conditions and drainage systems in the annual hydrological cycle.展开更多
Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of per...Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of permafrost that restricts the hydrothermal condition of alpine grassland ecosystem. In this paper, based on the structural dynamics, we developed the numerical model for the SER in the permafrost regions of the source of Yangtze and Yellow Rivers, analyzed the spatial-temporal characteristics and sensitivity of the SER, and estimated the effect of permafrost change on the SER. The results indicate that: 1) the SER has an increasing trend, especially after 1997, which is the joint effect of precipitation, temperature, NPP and ecological conservation projects; 2) the SER shows the spatial feature of high in southeast and low in northwest,which is consistent with the variation trends of high southeast and low northwest for the precipitation, temperature and NPP, and low southeast and high northwest for the altitude; 3) the high sensitive regions of SER to the permafrost change have gradually transited from the island distribution to zonal and planar distribution since 1980, moreover, the sensitive degree has gradually reduced; relatively, the sensitivity has high value in the north and south, and low value in the south and east; 4) the thickness of permafrost active layer shows a highly negative correlation with the SER. The contribution rate of permafrost change to the SER is-4.3%, that is, once the thickness of permafrost active layer increases 1 unit, the SER would decrease 0.04 units.展开更多
Evapotrantaspiration is a crucial part of the hydrological cycle but few ground observatories for the Tibetan Plateau exist.In this study,we present lysimeter measurements from the growing season during seven years at...Evapotrantaspiration is a crucial part of the hydrological cycle but few ground observatories for the Tibetan Plateau exist.In this study,we present lysimeter measurements from the growing season during seven years at a remote field location on the Tibetan Plateau.The measurements show rates between 2.5 and 3 mm·d-1 during the warmer months from June to August,dropping to 2 to 2.5 mm·d-1 in September.This results in a total volume of evapotranspiration of approximately 300 mm·yr-1 for the months from June to September.The inter-daily variability is however large,and comparison to meteorological variables suggest that this is largely driven by radiation and humidity.Data for a single season from a nearby flux tower allows us to compare the two common measurement methods for evapotranspiration in the field,showing an overall good agreement between the approaches.We also tested commonly applied models used to estimate evapotranspiration rates,namely the FAO-PenmanMonteith(PM) and the Priestly-Taylor(PT) model,which both make use of radiation data as well as the simpler Hargreaves-Samani(HS) and Rohwer(R)models which only need air temperature and wind speed as input.The most data intensive model(PM)has the lowest root mean square error(RMSE)(1.36 mm·d-1) and the mean bias error(MBE)(-0.05 mm·d-1) and reproduces the daily variability generally well.The much simpler HS model performs slightly worse(1.38 and 0.35 mm·d-1),but fails to reproduce the variability,due to its lack of information of local radiation and humidity data.Our results are in line with large scale estimates of evapotranspiration for the cold and arid region,provide a first long time series of in-situ measurements from a high elevation site and suggest that both the PM and HS models are appropriate when no direct measurements are available.展开更多
The profound impacts exerted by climate warming on the Tibetan Plateau have been documented extensively, but the biogeochemical responses remain poorly understood. This study was aimed at seasonal variations of total ...The profound impacts exerted by climate warming on the Tibetan Plateau have been documented extensively, but the biogeochemical responses remain poorly understood. This study was aimed at seasonal variations of total organic carbon(TOC) and total organic nitrogen(TON) in stream water at two gauging sections(TTH, ZMD) in the upper basin of Yangtze River(UBYA) and at fourgauging sections(HHY, JM, JG, TNH) in the upper basin of Yellow River(UBYE) in 2013. Results showed that concentrations of TON exhibit higher values in spring and winter and lower values in summer. TOC exhibits higher concentrations in spring or early summer and lower concentrations in autumn or winter. Seasonal variations of TOC and TON fluxes are dominated by water flux. In total, the UBYE and UBYA delivers 55,435 tons C of organic carbon and 9,872 tons N of organic nitrogen to downstream ecosystems in 2013. Although the combined flux ofTOC from UBYA and UBYE is far lower than those from large rivers, their combined yields is higher than, or comparable with, those from some large rivers(e.g. Nile, Orange, Columbia), implying that organic carbon from the Tibetan Plateau may exert a potentially influence on regional and/or global carbon cycles in future warming climate.展开更多
Low-lying prairie wetland, which has characteristics of both grassland and wetland, has irreplaceable ecological functions in inland river basins of Northwest China. Owing to its small-scale distribution, so far, the ...Low-lying prairie wetland, which has characteristics of both grassland and wetland, has irreplaceable ecological functions in inland river basins of Northwest China. Owing to its small-scale distribution, so far, the observation and research on it are rare. The estimation of evapotranspiration is significant to ecological and environmental construction, scientific management of pasture and protection of wetland. For studying the evapotranspiration (ET) of low-lying prairie wetland in the middle reaches of the Heihe River, an inland river, in Northwest China, the automatic weather station in Linze Ecological Experimental Station of Lanzhou University (39°15′ 3″N, 100°03′ 52″ E), Linze, Gansu Province, was selected as a case study. Based on meteorological data collected, Bowen-Ratio Energy Balance (BREB) method was used to calculate the evapotranspiration (ET) of low-lying prairie wetland. The analysis results showed that in a whole year (September 2003 -August 2004), the total ET was 611.5mm and mean daily 1.67mm/d. The ET varied with different growing stages. In non-growing stage (NGS), initial growing stage (IGS), middle growing stage (MGS) and end growing stage (EGS), the ET was 0.57, 2.01, 3.82 and 1.49mrrdd, with a percentage of total ET of 18.26%, 9.20%, 61.83% and 10.71% respectively. In March, ET began to increase. But in April, the ET increased most. After that, it increased gradually and got the maximal value in July. From then on, the ET decreased gradually. In September, the ET decreased rapidly. With the ending of growing and the freezing of soil, the ET stopped from the middle of November to February in next year. Hourly ET analysis showed that at 8:00 a.m. (during MGS at 7:00 a.m.), the evapotranspiration began, at 13:00 p.m. got its maximal value and at 19:00 p.m. (during MGS at 20:00 p.m.), the evapotranspiration stopped. The intensity of ET in sunny day was much larger than that in cloudy day in the same growing stage.展开更多
Society could sustain the impact of climate change by adapting to the change and mitigating risks from adverse effects of increasing changes,so that it can continue maintaining its prospect and improving wellbeing.Nev...Society could sustain the impact of climate change by adapting to the change and mitigating risks from adverse effects of increasing changes,so that it can continue maintaining its prospect and improving wellbeing.Nevertheless,climate change is more or less affecting society'sfunctions at different scales,including both individuals and communities.In this review,we discuss the relationship between society and climatechange in China from the aspects of the needs at different socioeconomic developing stages.The relationship as well as the current spatialpattern and future risks of the climate change impacts on societies are summarized.The complexity of social and climatic systems leads to thespatial heterogeneity of climate impacts and risks in China.To more effectively leverage increasing knowledge about the past,we advocategreater cross-disciplinary collaboration between climate adaption,poverty alleviation and Nature-based Solutions(Nbs).That could providedecision makers with more comprehensive train of thoughts for climate policy making.展开更多
A clear understanding of the changes of water resources under the background of environmental changes is of great significance for scientific management and utilization of water resources in China.This study systemati...A clear understanding of the changes of water resources under the background of environmental changes is of great significance for scientific management and utilization of water resources in China.This study systematically analyzed the spatialetemporal variations of surface water resources in China since 2000.Water vulnerability in current(2010s)and its trends from 2000 to late-2010s in different regions of China were also summarized.In addition,the correspondingly adaptive measures to counter regional risks to water resources were proposed.We concluded that the runoff of major rivers had been decreasing in eastern China and increasing in western China during 2000-2018.In the arid area of Northwest China,the alpine runoff has shown an overall upward trend since the late-1990s/early-2000s,with a 10%-25% increase caused by the increase of glacial meltwater and precipitation.While the runoff of each hydrological station in the 2000s-2010s was 34.7% lower than that in the 1950se2010s on average.The increases in precipitation and glacial meltwater with global warming caused a rapid expansion of lakes in the Qinghai-Tibet Plateau and Xinjiang,thus leading to an increase in total area and water quantity of lakes in China from 1995 to 2015.The mean contribution rates of climate change and human activity to runoff change in river basins of China were 53.5% and 46.5%,respectively,during the period of 2000-2010s.The driving factor of runoff change in many river basins has gradually changed from climate change(1950s-2000)to human activity(2000-2018).During 2000-2018,the contributions of human activities to runoff change were 50%-80% in major rivers of eastern China.The vulnerability in most areas of Northwest China and North China is generally high,with the vulnerability index greater than 0.6.Comparatively,in Northeast,East,South,and Central China,it is lower or not vulnerable.In Southwest China,the vulnerability varies greatly with Yunnan and Sichuan relatively low while Chongqing and Guizhou relatively high.The precipitation increase,the application of water-saving technology,the establishment of flood control and drought relief engineering facilities,and the introduction of relevant policies and measures have helped to gradually reduce the vulnerability of water resources in most areas of North and Northwest China(except Xinjiang)from 2000 to 2010s.Water vulnerability has been increasing in southern China,caused by climate change and the development of industry and agriculture,which increases water resource exposure since 2000.Based on the typical risk factors and vulnerability characteristics of water resources in different regions,this study proposed some targeted adaptive measures correspondingly so as to scientifically deal with the problems of surface water resources in China.展开更多
基金This study was jointly supported through grants provided as part of the Na tional Natural Science Foundation of China (41690142, 41730751)the State Key Laboratory of Cryospheric Science (SKLCS-ZZ-2-2018).
文摘Alpine grassland occupies two-thirds of the Qinghai-Tibetan Plateau (QTP). It is vital to project changes of this vulnerable ecosystem under different climate change scenarios before taking any mitigation or adaptation measures. In this study, we used a process-based ecosystem model, driven with output from global circulation models under different Representative Concentration Pathways (RCPs), to project the carbon dynamics of alpine grassland. The results showed the following: 1) Vegetation carbon (C) on the QTP increased by 22—38 gC m^-2 during periods of 1.5 and 2 ℃ warming under different RCPs when compared to the baseline period (1981—2006), while soil C increased by 85—122 gC m^-2. 2) The increases of vegetation C and soil C at the period of 1.5 ℃ warming were about 15 gC m^-2 and 40 gC m^-2 smaller than those at the period of 2 ℃ warming, respectively;increase of C was greater for alpine meadow than for alpine steppe. 3) Precipitation, radiation, and permafrost changed significantly and showed heterogeneous spatial patterns, and caused heterogeneous response of C dynamics. For alpine meadow in regions transformed from permafrost to seasonally frozen soil with medium annual precipitation (200—400 mm), vegetation C and net primary production decreased by 18.7 gC m-2 and 3.1 gC m^-2 per year during 2 °C warming under RCP 4.5, respectively. This decrease can be attributed to the disappearing impermeable permafrost. Different from previous studies that indicated an unfavorable response of alpine grassland to climate warming, this study showed a relatively favorable response, which is mainly attributed to C 0 2 fertilization.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19070501)the National Natural Science Foundation of China(41730751&41671066)the International Partnership Program of Chinese Academy of Sciences(131C 11KYSB20160061,Y560L01001).
文摘Global warming triggers shrinking and thinning of glaciers worldwide,with potentially severe implications for human society.However,regional differences in glacier retreat and its relationship with climatic characteristics have not been conclusively demonstrated.In this study,regional changes in global glaciers based on two primary features,area change and mass balance,were investigated on the basis of data collected from published research on glacier changes.Results show that during the period 1980—2015,the rate of global glacier area shrinkage was 0.18%per year and that of global glacier mass loss was 0.25 m w.e.per year.Retreat of glaciers located at low and middle latitudes was characterized by severe area shrinkage and mass loss.Correspondingly,in the Arctic,deglaciation was characterized by ice thinning due to a low area reduction but relatively high mass loss rate.However,glaciers in high southern latitudes were in a relatively stable status.High Mountain Asia exhibited the lowest rate of area shrinkage and mass loss among glaciers located at low and middle latitudes,and a slower rate of mass loss compared with the global average.Glaciers in the Tropical Andes exhibited the fastest rate of glacier area shrinkage(—1.6%per year),whereas Antarctic and Subantarctic glaciers showed the lowest rate(—0.11%per year).For mass balance,the most negative occurred at Southern Andes(—0.81 m w.e.per year),followed by Alaska(-0.74 m w.e.per year).Only the Antarctic and Subantarctic experienced small mass gain(0.04 m w.e.per year).High levels of correlation are found between the rates of glacier retreat and annual average temperature and annual total precipitation instead of their trends.The variability of the surface climate conditions in the glacier environment plays a key role in driving these regional differences in global glacier retreat.
基金The Knowledge Innovation Project of CAS NO. KZCX1-10-06
文摘Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951-1999, the aridity index is calculated in this paper. According to the aridity index, the climatic regions in China are classified into three types, namely, arid region, semi-arid region and humid region. Dry and wet climate boundaries in China fluctuate markedly and differentiate greatly in each region in the past 50 years. The fluctuation amplitudes are 20-400 km in Northeast China, 40-400 km in North China, 30-350 km in the eastern part of Northwest China and 40-370 km in Southwest China. Before the 1980s (including 1980), the climate tended to be dry in Northeast China and North China, to be wet in the eastern part of Northwest China and very wet in Southwest China. Since the 1990s there have been dry signs in Southwest China, the eastern part of Northwest China and North China. The climate becomes wetter in Northeast China. Semi-arid region is the transitional zone between humid and arid regions, the monsoon edge belt in China, and the susceptible region of environmental evolution. At the end of the 1960s dry and wet climate in China witnessed abrupt changes, changing wetness into dryness. Dry and wet climate boundaries show the fluctuation characteristics of the whole shifts and the opposite fluctuations of eastward, westward, southward and northward directions. The fluctuations of climatic boundaries and the dry and wet variations of climate have distinctive interdecadal features.
基金supported by grants from the National Basic Research Program of China (2013CBA01808)the National Natural Science Foundation of China (41271088)
文摘Mountain glaciers in China are an important water source for both China and adjoining countries, and therefore their adaptation to glacier change is crucial in relation to maintaining populations. This study aims to improve our understanding of glacial vulnerability to climate change to establish adaptation strategies. A glacial numerical model is developed using spatial principle component analysis (SPCA) supported by remote sensing (RS) and geographical information system (GIS) technologies. The model contains nine factors--slope, aspect, hillshade, elevation a.s.l., air temperature, precipitation, glacial area change percentage, glacial type and glacial area, describing topography, climate, and glacier characteristics. The vulnerability of glaciers to climate change is evaluated during the period of 1961-2007 on a regional scale, and in the 2030s and 2050s based on projections of air temperature and precipitation changes under the IPCC RCP6.0 scenario and of glacier change in the 21st century. Glacial vulnerability is graded into five levels: potential, light, medial, heavy, and very heavy, using natural breaks classification (NBC). The spatial distribution of glacial vulnerability and its temporal changes in the 21st century for the RCP6.0 scenario are analyzed, and the factors influencing vulnerability are discussed. Results show that mountain glaciers in China are very vulnerable to climate change, and 41.2% of glacial areas fall into the levels of heavy and very heavy vulnerability in the period 1961-2007. This is mainly explained by topographical exposure and the high sensitivity of glaciers to climate change. Trends of glacial vulnerability are projected to decline in the 2030s and 2050s, but a declining trend is still high in some regions. In addition to topographical factors, variation in precipitation in the 2030s and 2050s is found to be crucial.
基金the projects of National Major Scientific Research Project (2013CBA01806)National Natural Science Foundation of China (Grant Nos. 41271085,41130641)open fund project of State Key Laboratory of Cryospheric Science (SKLCS-OP2013-05)
文摘To evaluate isotopic tracers at natural abundances by providing basic isotope data of the hydrological investigations and assessing the impacts of different factors on the water cycle, a total of 197 water samples were collected from the Laohugou Glacial catchment in the Shule River basin northwestern China during the 2013 ablation seasons and analyzed their H- and O-isotope composition. The results showed that the isotopic composition of precipitation in the Qilianshan Station in the Laohugou Glacial catchment was remarkable variability. Correspondingly, a higher slope of δ180-δD diagram, with an average of 8.74, is obtained based on the precipitation samples collected on the Glacier No.la, mainly attributed to the lower temperature on the glacier surface. Because of percolation and elution, the bottom of the firn the isotopic composition at is nearly steady. The 6180 /altitude gradients for precipitation and melt water were -o.37%o/100 m and -o.34%o/100 m, respectively Exposed to the air and influenced by strong ablation and evaporation, the isotopic values and the 6180 vs 6D diagram of the glacial surface ice show no altitudinal effect, indicating that glacier ice has the similar origins with the firn. The variation of isotopic composition in the melt water, varying from -l0.7‰ to -16.9‰ (8180) and from -61.1%o to -122.1%o (6D) indicates the recharging of snowmelt and glacial ice melt water produced at different altitudes. With a mean value of -13.3‰ for 8180 and -89.7‰ for 8D, the isotopic composition of the stream water is much closer to the melt water, indicating that stream water is mainly recharged by the ablation water. Our results of the stable isotopic compositions in natural water in the Laohugou Glacial catchment indicate the fractionations and the smoothing fluctuations of the stable isotopes during evaporation, infiltration and mixture.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No. KZCX2-YW-GJ04National Nature Science Foundation of China (NSFC) under Grant Nos. 41130641 and 41271078
文摘By using a degree-day based distributed hydrological model, regimes of glacial runoff from the Koxkar glacier during 2007-2011 are simulated, and variations and characteristics of major hydrological components are discussed. The results show that the meltwater runoff contributes 67.4%, of the proglacial discharge, out of which snowmelt, clean ice melting, buried-ice ablation and ice-cliff backwasting account for 22.4%, 21.9%, 17.9% and 5.3% of the total melt runoff, respectively. Rainfall runoff is significant in mid-latitude glacierized mountain areas like Tianshan and Karakorum. In the Koxkar glacier catchment, about 11.5% of stream water is initiated from liquid precipitation. Spatial distributions for each glacial runoff component reveal the importance of climatic gradients, local topography and morphology on glacial runoff generation, and temporal variations of these components is closely related to the annual cycle of catchment meteorology and glacier storage. Four stages are recognized in the seasonal variations of glacier storage, reflecting changes in meltwater yields, meteorological conditions and drainage systems in the annual hydrological cycle.
基金supported by grants from the National Natural Science Foundation of China (Grant No. 41571523, and Grant No. 41661144038)the National Basic Research Program of China(Grant No. 2013CBA01808)the National Key Technology R&D Program of the Ministry of Science and Technology of China (Grant No. 2014BAC05B01)
文摘Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of permafrost that restricts the hydrothermal condition of alpine grassland ecosystem. In this paper, based on the structural dynamics, we developed the numerical model for the SER in the permafrost regions of the source of Yangtze and Yellow Rivers, analyzed the spatial-temporal characteristics and sensitivity of the SER, and estimated the effect of permafrost change on the SER. The results indicate that: 1) the SER has an increasing trend, especially after 1997, which is the joint effect of precipitation, temperature, NPP and ecological conservation projects; 2) the SER shows the spatial feature of high in southeast and low in northwest,which is consistent with the variation trends of high southeast and low northwest for the precipitation, temperature and NPP, and low southeast and high northwest for the altitude; 3) the high sensitive regions of SER to the permafrost change have gradually transited from the island distribution to zonal and planar distribution since 1980, moreover, the sensitive degree has gradually reduced; relatively, the sensitivity has high value in the north and south, and low value in the south and east; 4) the thickness of permafrost active layer shows a highly negative correlation with the SER. The contribution rate of permafrost change to the SER is-4.3%, that is, once the thickness of permafrost active layer increases 1 unit, the SER would decrease 0.04 units.
基金National Key Research and Development Plan projects (2017YFC0405706, 2017YFC0405704)CRSRI Open Research Program (program SNCKWV2017534/KY)+3 种基金Key Funds of the National Natural Science Foundation (41730751)National Natural Science Foundation of China (4171079)Special Fund for Basic Scientific Research Operating Expenses of Central Public Welfare Research Institutes (CKSF2017045)National Key Laboratory of Cryosphere Science (SKLCS-ZZ2020)。
文摘Evapotrantaspiration is a crucial part of the hydrological cycle but few ground observatories for the Tibetan Plateau exist.In this study,we present lysimeter measurements from the growing season during seven years at a remote field location on the Tibetan Plateau.The measurements show rates between 2.5 and 3 mm·d-1 during the warmer months from June to August,dropping to 2 to 2.5 mm·d-1 in September.This results in a total volume of evapotranspiration of approximately 300 mm·yr-1 for the months from June to September.The inter-daily variability is however large,and comparison to meteorological variables suggest that this is largely driven by radiation and humidity.Data for a single season from a nearby flux tower allows us to compare the two common measurement methods for evapotranspiration in the field,showing an overall good agreement between the approaches.We also tested commonly applied models used to estimate evapotranspiration rates,namely the FAO-PenmanMonteith(PM) and the Priestly-Taylor(PT) model,which both make use of radiation data as well as the simpler Hargreaves-Samani(HS) and Rohwer(R)models which only need air temperature and wind speed as input.The most data intensive model(PM)has the lowest root mean square error(RMSE)(1.36 mm·d-1) and the mean bias error(MBE)(-0.05 mm·d-1) and reproduces the daily variability generally well.The much simpler HS model performs slightly worse(1.38 and 0.35 mm·d-1),but fails to reproduce the variability,due to its lack of information of local radiation and humidity data.Our results are in line with large scale estimates of evapotranspiration for the cold and arid region,provide a first long time series of in-situ measurements from a high elevation site and suggest that both the PM and HS models are appropriate when no direct measurements are available.
基金funded by the National Natural Science Foundation of China (91647102, 41671053, 41201060, 41271035, 41261017)Open Foundations of State Key Laboratory of Frozen Soil Engineering (SKLFSE201411)+5 种基金Open Foundation of the State Key Laboratory of Cryospheric Sciences (SKLCS-OP-2017-03)Open Foundations of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (2015490111)Fundamental Research Funds for the Central Universities (2014B16914)Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (20145027312)Academy of Finland (Decision number 268170), Hundred Talents Program, Chinese Academy of Sciences Key Research Program (KZZD-EW-13)the Fundamental Research Funds for the Central Universities (NO. B14020167)
文摘The profound impacts exerted by climate warming on the Tibetan Plateau have been documented extensively, but the biogeochemical responses remain poorly understood. This study was aimed at seasonal variations of total organic carbon(TOC) and total organic nitrogen(TON) in stream water at two gauging sections(TTH, ZMD) in the upper basin of Yangtze River(UBYA) and at fourgauging sections(HHY, JM, JG, TNH) in the upper basin of Yellow River(UBYE) in 2013. Results showed that concentrations of TON exhibit higher values in spring and winter and lower values in summer. TOC exhibits higher concentrations in spring or early summer and lower concentrations in autumn or winter. Seasonal variations of TOC and TON fluxes are dominated by water flux. In total, the UBYE and UBYA delivers 55,435 tons C of organic carbon and 9,872 tons N of organic nitrogen to downstream ecosystems in 2013. Although the combined flux ofTOC from UBYA and UBYE is far lower than those from large rivers, their combined yields is higher than, or comparable with, those from some large rivers(e.g. Nile, Orange, Columbia), implying that organic carbon from the Tibetan Plateau may exert a potentially influence on regional and/or global carbon cycles in future warming climate.
基金Underthe auspicesofthe Sino-Japan Cooperation Projectand the SpecialFund ofC hina M etrologicalA dm inistration(N o.C CSF-2005-2-Q H 39)
文摘Low-lying prairie wetland, which has characteristics of both grassland and wetland, has irreplaceable ecological functions in inland river basins of Northwest China. Owing to its small-scale distribution, so far, the observation and research on it are rare. The estimation of evapotranspiration is significant to ecological and environmental construction, scientific management of pasture and protection of wetland. For studying the evapotranspiration (ET) of low-lying prairie wetland in the middle reaches of the Heihe River, an inland river, in Northwest China, the automatic weather station in Linze Ecological Experimental Station of Lanzhou University (39°15′ 3″N, 100°03′ 52″ E), Linze, Gansu Province, was selected as a case study. Based on meteorological data collected, Bowen-Ratio Energy Balance (BREB) method was used to calculate the evapotranspiration (ET) of low-lying prairie wetland. The analysis results showed that in a whole year (September 2003 -August 2004), the total ET was 611.5mm and mean daily 1.67mm/d. The ET varied with different growing stages. In non-growing stage (NGS), initial growing stage (IGS), middle growing stage (MGS) and end growing stage (EGS), the ET was 0.57, 2.01, 3.82 and 1.49mrrdd, with a percentage of total ET of 18.26%, 9.20%, 61.83% and 10.71% respectively. In March, ET began to increase. But in April, the ET increased most. After that, it increased gradually and got the maximal value in July. From then on, the ET decreased gradually. In September, the ET decreased rapidly. With the ending of growing and the freezing of soil, the ET stopped from the middle of November to February in next year. Hourly ET analysis showed that at 8:00 a.m. (during MGS at 7:00 a.m.), the evapotranspiration began, at 13:00 p.m. got its maximal value and at 19:00 p.m. (during MGS at 20:00 p.m.), the evapotranspiration stopped. The intensity of ET in sunny day was much larger than that in cloudy day in the same growing stage.
基金Chinese Academy of SciencesSTS Project(KFJ-STS-ZDTP-052)National Natural Science Foundation of China(41730751)Youth Talent Project ofNorthwest Institute of Eco-Environment and Resources,Chi-nese Academy of Sciences(FEYS2019016)。
文摘Society could sustain the impact of climate change by adapting to the change and mitigating risks from adverse effects of increasing changes,so that it can continue maintaining its prospect and improving wellbeing.Nevertheless,climate change is more or less affecting society'sfunctions at different scales,including both individuals and communities.In this review,we discuss the relationship between society and climatechange in China from the aspects of the needs at different socioeconomic developing stages.The relationship as well as the current spatialpattern and future risks of the climate change impacts on societies are summarized.The complexity of social and climatic systems leads to thespatial heterogeneity of climate impacts and risks in China.To more effectively leverage increasing knowledge about the past,we advocategreater cross-disciplinary collaboration between climate adaption,poverty alleviation and Nature-based Solutions(Nbs).That could providedecision makers with more comprehensive train of thoughts for climate policy making.
基金supported by the National Natural Science Foundation of China,China(41877156,41730751,and 41771040)the Chinese Academy of Sciences STS Project(KFJ-STS-ZDTP-052)+1 种基金the Science and Technology Program of Gansu Province,China(20JR5RA545)the Youth Talent Project of Northwest Institute of Eco-Environmental Resources,Chinese Academy of Sciences(FEYS2019016).
文摘A clear understanding of the changes of water resources under the background of environmental changes is of great significance for scientific management and utilization of water resources in China.This study systematically analyzed the spatialetemporal variations of surface water resources in China since 2000.Water vulnerability in current(2010s)and its trends from 2000 to late-2010s in different regions of China were also summarized.In addition,the correspondingly adaptive measures to counter regional risks to water resources were proposed.We concluded that the runoff of major rivers had been decreasing in eastern China and increasing in western China during 2000-2018.In the arid area of Northwest China,the alpine runoff has shown an overall upward trend since the late-1990s/early-2000s,with a 10%-25% increase caused by the increase of glacial meltwater and precipitation.While the runoff of each hydrological station in the 2000s-2010s was 34.7% lower than that in the 1950se2010s on average.The increases in precipitation and glacial meltwater with global warming caused a rapid expansion of lakes in the Qinghai-Tibet Plateau and Xinjiang,thus leading to an increase in total area and water quantity of lakes in China from 1995 to 2015.The mean contribution rates of climate change and human activity to runoff change in river basins of China were 53.5% and 46.5%,respectively,during the period of 2000-2010s.The driving factor of runoff change in many river basins has gradually changed from climate change(1950s-2000)to human activity(2000-2018).During 2000-2018,the contributions of human activities to runoff change were 50%-80% in major rivers of eastern China.The vulnerability in most areas of Northwest China and North China is generally high,with the vulnerability index greater than 0.6.Comparatively,in Northeast,East,South,and Central China,it is lower or not vulnerable.In Southwest China,the vulnerability varies greatly with Yunnan and Sichuan relatively low while Chongqing and Guizhou relatively high.The precipitation increase,the application of water-saving technology,the establishment of flood control and drought relief engineering facilities,and the introduction of relevant policies and measures have helped to gradually reduce the vulnerability of water resources in most areas of North and Northwest China(except Xinjiang)from 2000 to 2010s.Water vulnerability has been increasing in southern China,caused by climate change and the development of industry and agriculture,which increases water resource exposure since 2000.Based on the typical risk factors and vulnerability characteristics of water resources in different regions,this study proposed some targeted adaptive measures correspondingly so as to scientifically deal with the problems of surface water resources in China.