Echinacoside (ECH) is protective in a mouse model of Parkinson' s disease (PD) induced by 1-methyl-4- phenylpyridinium ion (MPP+). To investigate the mechanisms involved, SH-SYSY neuroblastoma ceils were treat...Echinacoside (ECH) is protective in a mouse model of Parkinson' s disease (PD) induced by 1-methyl-4- phenylpyridinium ion (MPP+). To investigate the mechanisms involved, SH-SYSY neuroblastoma ceils were treated with MPP+ or a combination of MPP+ and ECH, and the expression of ATF3 (activating transcription factor 3), CHOP (C/EBP-homologous protein), SCNA (synuclein alpha), and GDNF (glial cell line-derived neurotrophic factor) was assessed. The results showed that ECH significantly improved cell survival by inhibiting the generation of MPP+-induced reactive oxygen species (ROS). In addition, ECH suppressed the ROS and MPP+- induced expression of apoptotic genes (ATF3, CHOP, and SCNA). ECH markedly decreased the MPP+-induced cas- pase-3 activity in a dose-dependent manner. ATF3- knockdown also decreased the CHOP and cleaved caspase- 3 levels and inhibited the apoptosis induced by MPP+. Interestingly, ECH partially restored the GDNF expression that was down-regulated by MPP+. ECH also improved dopaminergic neuron survival during MPP+ treatment and protected these neurons against the apoptosis induced by MPTP. Taken together, these data suggest that the ROS/ ATF3/CHOP pathway plays a critical role in mechanisms by which ECH protects against MPP+-induced apoptosis in PD.展开更多
基金supported by the National Natural Science Foundation of China(81202814)the Shanghai Municipal Commission of Health and Family Planning(20124y116)the Young Teachers Training Funding Scheme of Shanghai Colleges and Universities,China(zzszy12026)
文摘Echinacoside (ECH) is protective in a mouse model of Parkinson' s disease (PD) induced by 1-methyl-4- phenylpyridinium ion (MPP+). To investigate the mechanisms involved, SH-SYSY neuroblastoma ceils were treated with MPP+ or a combination of MPP+ and ECH, and the expression of ATF3 (activating transcription factor 3), CHOP (C/EBP-homologous protein), SCNA (synuclein alpha), and GDNF (glial cell line-derived neurotrophic factor) was assessed. The results showed that ECH significantly improved cell survival by inhibiting the generation of MPP+-induced reactive oxygen species (ROS). In addition, ECH suppressed the ROS and MPP+- induced expression of apoptotic genes (ATF3, CHOP, and SCNA). ECH markedly decreased the MPP+-induced cas- pase-3 activity in a dose-dependent manner. ATF3- knockdown also decreased the CHOP and cleaved caspase- 3 levels and inhibited the apoptosis induced by MPP+. Interestingly, ECH partially restored the GDNF expression that was down-regulated by MPP+. ECH also improved dopaminergic neuron survival during MPP+ treatment and protected these neurons against the apoptosis induced by MPTP. Taken together, these data suggest that the ROS/ ATF3/CHOP pathway plays a critical role in mechanisms by which ECH protects against MPP+-induced apoptosis in PD.