Surface acoustic wave (SAW) technology has been extensively explored for wireless communication, sensors, microfluidics, photonics, and quantum information processing. However, due to fabrication issues, the frequenci...Surface acoustic wave (SAW) technology has been extensively explored for wireless communication, sensors, microfluidics, photonics, and quantum information processing. However, due to fabrication issues, the frequencies of SAW devices are typically limited to within a few gigahertz, which severely restricts their applications in 5G communication, precision sensing, photonics, and quantum control. To solve this critical problem, we propose a hybrid strategy that integrates a nanomanufacturing process (i.e., nanolithography) with a LiNbO_(3)/SiO_(2)/SiC heterostructure and successfully achieve a record-breaking frequency of about 44 GHz for SAW devices, in addition to large electromechanical coupling coefficients of up to 15.7%. We perform a theoretical analysis and identify the guided higher order wave modes generated on these slow-on-fast SAW platforms. To demonstrate the superior sensing performance of the proposed ultra-high-frequency SAW platforms, we perform micro-mass sensing and obtain an extremely high sensitivity of approximately 33151.9 MHz·mm2·μg−1, which is about 1011 times higher than that of a conventional quartz crystal microbalance (QCM) and about 4000 times higher than that of a conventional SAW device with a frequency of 978 MHz.展开更多
Flexible surface acoustic wave(SAW)devices have recently attracted tremendous attention for their widespread application in sensing and microfluidics.However,for these applications,SAW devices often need to be bent in...Flexible surface acoustic wave(SAW)devices have recently attracted tremendous attention for their widespread application in sensing and microfluidics.However,for these applications,SAW devices often need to be bent into offaxis deformations between the acoustic wave propagation direction and bending direction.Currently,there are few studies on this topic,and the bending mechanisms during off-axis bending deformations have remained unexplored for multisensing applications.Herein,we fabricated aluminum nitride(AlN)flexible SAW devices by using high-quality AlN films deposited on flexible glass substrates and systematically investigated their complex deformation behaviors.A theoretical model was first developed using coupling wave equations and the boundary condition method to analyze the characteristics of the device with bending and off-axis deformation under elastic strains.The relationships between the frequency shifts of the SAW device and the bending strain and off-axis angle were obtained,and the results were identical to those from the theoretical calculations.Finally,we performed proof-of-concept demonstrations of its multisensing potential by monitoring human wrist movements at various off-axis angles and detecting UV light intensities on a curved surface,thus paving the way for the application of versatile flexible electronics.展开更多
基金supported by the National Science Foundation of China(NSFC)(52075162)the Program of New and High-Tech Industry of Hunan Province(2020GK2015 and 2021GK4014)+5 种基金the Excellent Youth Fund of Hunan Province(2021JJ20018)the Key Program of Guangdong(2020B0101040002)the Joint Fund of the Ministry of Education(Young Talents)the Natural Science Foundation of Changsha(kq2007026)the Tianjin Enterprise Science and Technology Commissioner Project(19JCTPJC56200)the Engineering Physics and Science Research Council of the United Kingdom(EPSRC EP/P018998/1).
文摘Surface acoustic wave (SAW) technology has been extensively explored for wireless communication, sensors, microfluidics, photonics, and quantum information processing. However, due to fabrication issues, the frequencies of SAW devices are typically limited to within a few gigahertz, which severely restricts their applications in 5G communication, precision sensing, photonics, and quantum control. To solve this critical problem, we propose a hybrid strategy that integrates a nanomanufacturing process (i.e., nanolithography) with a LiNbO_(3)/SiO_(2)/SiC heterostructure and successfully achieve a record-breaking frequency of about 44 GHz for SAW devices, in addition to large electromechanical coupling coefficients of up to 15.7%. We perform a theoretical analysis and identify the guided higher order wave modes generated on these slow-on-fast SAW platforms. To demonstrate the superior sensing performance of the proposed ultra-high-frequency SAW platforms, we perform micro-mass sensing and obtain an extremely high sensitivity of approximately 33151.9 MHz·mm2·μg−1, which is about 1011 times higher than that of a conventional quartz crystal microbalance (QCM) and about 4000 times higher than that of a conventional SAW device with a frequency of 978 MHz.
基金This work was supported by the General Program of the National Natural Science Foundation of China(NSFC No.52075162)the Innovation Leading Program of New and High-tech Industry of Hunan Province(2020GK2015)+5 种基金The Natural Science Foundation of Hunan Province(2021JJ20018)the Natural Science Foundation of Changsha(kq2007026)the Key Research Project of Guangdong Province(2020B0101040002)NSFC-Zhejiang Joint Fund for the Integration of Industrialization anf information(No.U20A20172,U1909212)the Engineering Physics and Science Research Council of UK(EPSRC EP/P018998/1)the International Exchange Grant(IEC/NSFC/201078)through the Royal Society and NSFC.
文摘Flexible surface acoustic wave(SAW)devices have recently attracted tremendous attention for their widespread application in sensing and microfluidics.However,for these applications,SAW devices often need to be bent into offaxis deformations between the acoustic wave propagation direction and bending direction.Currently,there are few studies on this topic,and the bending mechanisms during off-axis bending deformations have remained unexplored for multisensing applications.Herein,we fabricated aluminum nitride(AlN)flexible SAW devices by using high-quality AlN films deposited on flexible glass substrates and systematically investigated their complex deformation behaviors.A theoretical model was first developed using coupling wave equations and the boundary condition method to analyze the characteristics of the device with bending and off-axis deformation under elastic strains.The relationships between the frequency shifts of the SAW device and the bending strain and off-axis angle were obtained,and the results were identical to those from the theoretical calculations.Finally,we performed proof-of-concept demonstrations of its multisensing potential by monitoring human wrist movements at various off-axis angles and detecting UV light intensities on a curved surface,thus paving the way for the application of versatile flexible electronics.