This study compares the climatology and long-term trend of northern winter stratospheric residual mean meridional circulation(RMMC), as well as its responses to El Ni?o-Southern Oscillation(ENSO), stratospheric Quasi ...This study compares the climatology and long-term trend of northern winter stratospheric residual mean meridional circulation(RMMC), as well as its responses to El Ni?o-Southern Oscillation(ENSO), stratospheric Quasi Biennial Oscillation(QBO), and solar cycle in ten reanalyses and a stratosphere-resolving model, CESM1-WACCM. The RMMC is a large-scale meridional circulation cell in the stratosphere, usually referred to as the estimate of the Brewer Dobson circulation(BDC). The distribution of the BDC is generally consistent among multiple reanalyses except that the NOAA twentieth century reanalysis(20RC) largely underestimates it. Most reanalyses(except ERA40 and ERA-Interim) show a strengthening trend for the BDC during 1979–2010. All reanalyses and CESM1-WACCM consistently reveal that the deep branch of the BDC is significantly enhanced in El Ni?o winters as more waves from the troposphere dissipate in the stratospheric polar vortex region. A secondary circulation cell is coupled to the temperature anomalies below the QBO easterly center at 50 hPa with tropical upwelling/cooling and midlatitude downwelling/warming, and similar secondary circulation cells also appear between 50–10 hPa and above 10 hPa to balance the temperature anomalies. The direct BDC response to QBO in the upper stratosphere creates a barrier near 30°N to prevent waves from propagating to midlatitudes, contributing to the weakening of the polar vortex. The shallow branch of the BDC in the lower stratosphere is intensified during solar minima, and the downwelling warms the Arctic lower stratosphere. The stratospheric responses to QBO and solar cycle in most reanalyses are generally consistent except in the two 20 CRs.展开更多
It is known that different relationships exist between the strength and displacement of the stratospheric polar vortex(SPV),and the surface air temperature(SAT)patterns in Eurasia and North America,but the mechanisms ...It is known that different relationships exist between the strength and displacement of the stratospheric polar vortex(SPV),and the surface air temperature(SAT)patterns in Eurasia and North America,but the mechanisms behind these relationships remain unclear,especially on an interannual timescale.Based on empirical orthogonal function(EOF)analysis using NCEP reanalysis data over 1958–2018,this study attempts to ascertain the relationship between the SPV intensity and displacement over the Arctic and the SATs in the midlatitudes of the Northern Hemisphere.Our results indicate that a strengthened SPV corresponds to an SAT increase in Eurasia and a decrease in eastern North America and Greenland.When the SPV is shifted towards Eurasia,however,a corresponding SAT increase occurs in both North America and Eurasia,with a larger increase in North America than in Eurasia.Specifically,a strengthened SPV tends to correspond to a positive North Atlantic Oscillation-like circulation in the troposphere with negative geopotential height(GH)anomalies in Greenland and eastern North American continent and positive GH anomalies to the north of 45°N in Eurasia,which corresponds to lower SATs in North America than in Eurasia.However,when the SPV shifted towards Eurasia,it was accompanied by a positive Pacific/North American-like pattern with a deepened Aleutian low,which corresponds to the increasing SATs in North America.These tropospheric circulation changes are related to the response of tropospheric planetary wave activity to the SPV.A strengthened SPV corresponds to the weakening of tropospheric planetary wave-1 waves,which is accompanied by a negative GH in North America but a positive GH in Eurasia.If the SPV shifted towards Eurasia,the tropospheric planetary wave-1(-2)waves strengthened(weakened),and the combined effects of the planetary wave-1 and wave-2 waves would cause positive GH anomalies in both Eurasia and North America.展开更多
基金supported by grants from the National Natural Science Foundation of China(41705024,41875048)the National Key R&D Program of China(2016YFA0602104)+1 种基金the Planning and Budgeting Committee of the Council for Higher Education in Israelthe Startup Foundation for Introducing Talent of NUIST(2016r060)
文摘This study compares the climatology and long-term trend of northern winter stratospheric residual mean meridional circulation(RMMC), as well as its responses to El Ni?o-Southern Oscillation(ENSO), stratospheric Quasi Biennial Oscillation(QBO), and solar cycle in ten reanalyses and a stratosphere-resolving model, CESM1-WACCM. The RMMC is a large-scale meridional circulation cell in the stratosphere, usually referred to as the estimate of the Brewer Dobson circulation(BDC). The distribution of the BDC is generally consistent among multiple reanalyses except that the NOAA twentieth century reanalysis(20RC) largely underestimates it. Most reanalyses(except ERA40 and ERA-Interim) show a strengthening trend for the BDC during 1979–2010. All reanalyses and CESM1-WACCM consistently reveal that the deep branch of the BDC is significantly enhanced in El Ni?o winters as more waves from the troposphere dissipate in the stratospheric polar vortex region. A secondary circulation cell is coupled to the temperature anomalies below the QBO easterly center at 50 hPa with tropical upwelling/cooling and midlatitude downwelling/warming, and similar secondary circulation cells also appear between 50–10 hPa and above 10 hPa to balance the temperature anomalies. The direct BDC response to QBO in the upper stratosphere creates a barrier near 30°N to prevent waves from propagating to midlatitudes, contributing to the weakening of the polar vortex. The shallow branch of the BDC in the lower stratosphere is intensified during solar minima, and the downwelling warms the Arctic lower stratosphere. The stratospheric responses to QBO and solar cycle in most reanalyses are generally consistent except in the two 20 CRs.
基金Supported by the National Natural Science Foundation of China(42175072)Strategic Priority Research Program of Chinese Academy of Sciences(XDA2010030804)。
文摘It is known that different relationships exist between the strength and displacement of the stratospheric polar vortex(SPV),and the surface air temperature(SAT)patterns in Eurasia and North America,but the mechanisms behind these relationships remain unclear,especially on an interannual timescale.Based on empirical orthogonal function(EOF)analysis using NCEP reanalysis data over 1958–2018,this study attempts to ascertain the relationship between the SPV intensity and displacement over the Arctic and the SATs in the midlatitudes of the Northern Hemisphere.Our results indicate that a strengthened SPV corresponds to an SAT increase in Eurasia and a decrease in eastern North America and Greenland.When the SPV is shifted towards Eurasia,however,a corresponding SAT increase occurs in both North America and Eurasia,with a larger increase in North America than in Eurasia.Specifically,a strengthened SPV tends to correspond to a positive North Atlantic Oscillation-like circulation in the troposphere with negative geopotential height(GH)anomalies in Greenland and eastern North American continent and positive GH anomalies to the north of 45°N in Eurasia,which corresponds to lower SATs in North America than in Eurasia.However,when the SPV shifted towards Eurasia,it was accompanied by a positive Pacific/North American-like pattern with a deepened Aleutian low,which corresponds to the increasing SATs in North America.These tropospheric circulation changes are related to the response of tropospheric planetary wave activity to the SPV.A strengthened SPV corresponds to the weakening of tropospheric planetary wave-1 waves,which is accompanied by a negative GH in North America but a positive GH in Eurasia.If the SPV shifted towards Eurasia,the tropospheric planetary wave-1(-2)waves strengthened(weakened),and the combined effects of the planetary wave-1 and wave-2 waves would cause positive GH anomalies in both Eurasia and North America.