Saba senegalensis is a wild edible fruit plant species with a high economic potential which can be used to fight food insecurity in rural areas and to reduce poverty. Domestication programs are being carried out to bo...Saba senegalensis is a wild edible fruit plant species with a high economic potential which can be used to fight food insecurity in rural areas and to reduce poverty. Domestication programs are being carried out to boost production. However, no studies have been done to determine the optimal soil properties for growing S. senegalensis. This study was carried out to determine the effects of the physical and chemical properties of different substrates on the mycorrhization and growth of S. senegalensis under semi-controlled conditions. S. senegalensis seeds were grown for 4 months in the nursery using five substrates: S1 (1/2 sand + 1/2 potting soil), S2 (1/3 sand + 2/3 potting soil), S3 (2/3 sand + 1/3 potting soil), S4 (potting soil) and S5 (sand). The intensity of mycorrhization was highest for plants grown on substrates with a lowest clay, silt, and nutrient content S3 (29.5%) and S5 (23.5%) respectively. Substrates with much higher clay and silt content stimulated better the growth of S. senegalensis than substrates with lower silt clay and nutrient content. In the context of domestication, the quality of the substrates could be used to stimulate the mycorrhization and the growth of S. senegalensis and thus quickly produce vigorous plants.展开更多
Abstract: Distribution and diversity of rhizobial strains associated with Acacia senegal (L.) Willd. in relation to seed provenances in soils from arid (Dahra) and semiarid (Goudiry) zones of Senegal were investigated...Abstract: Distribution and diversity of rhizobial strains associated with Acacia senegal (L.) Willd. in relation to seed provenances in soils from arid (Dahra) and semiarid (Goudiry) zones of Senegal were investigated. PCR-RFLP performed on 16S-23S rDNA intergenic spacer (IGS) of nodule crude extracts revealed a high genetic diversity of rhizobial strains, which was higher in the semiarid region than in the arid region. The distribution of rhizobial populations was influenced by soil physical and chemical characteristics, and by A. senegal provenances as shown by the analysis of correspondence. In contrast, the phenotypic diversity of rhizobial strains was not correlated with the soil origin. The phylogenetic tree (performed by the maximum likelihood algorithm) of IGS 16S-23S sequences showed that most of the rhizobial strains nodulating A. senegal were closely related to Mesorhizobium plurifarium. Our results showed that rhizobial taxa associated with A. senegal were mainly distributed according to soil physical and chemical characteristics, and A. senegal provenances. A large subset of A. senegal root-nodulating bacteria had high diversity that correlated with the most favourable environmental conditions. Understanding the diversity and distribution of rhizobial strains may be exploited in the formulation of A. senegal inoculants for different seed provenances for resilience to soil stresses in various environmental conditions.展开更多
文摘Saba senegalensis is a wild edible fruit plant species with a high economic potential which can be used to fight food insecurity in rural areas and to reduce poverty. Domestication programs are being carried out to boost production. However, no studies have been done to determine the optimal soil properties for growing S. senegalensis. This study was carried out to determine the effects of the physical and chemical properties of different substrates on the mycorrhization and growth of S. senegalensis under semi-controlled conditions. S. senegalensis seeds were grown for 4 months in the nursery using five substrates: S1 (1/2 sand + 1/2 potting soil), S2 (1/3 sand + 2/3 potting soil), S3 (2/3 sand + 1/3 potting soil), S4 (potting soil) and S5 (sand). The intensity of mycorrhization was highest for plants grown on substrates with a lowest clay, silt, and nutrient content S3 (29.5%) and S5 (23.5%) respectively. Substrates with much higher clay and silt content stimulated better the growth of S. senegalensis than substrates with lower silt clay and nutrient content. In the context of domestication, the quality of the substrates could be used to stimulate the mycorrhization and the growth of S. senegalensis and thus quickly produce vigorous plants.
文摘Abstract: Distribution and diversity of rhizobial strains associated with Acacia senegal (L.) Willd. in relation to seed provenances in soils from arid (Dahra) and semiarid (Goudiry) zones of Senegal were investigated. PCR-RFLP performed on 16S-23S rDNA intergenic spacer (IGS) of nodule crude extracts revealed a high genetic diversity of rhizobial strains, which was higher in the semiarid region than in the arid region. The distribution of rhizobial populations was influenced by soil physical and chemical characteristics, and by A. senegal provenances as shown by the analysis of correspondence. In contrast, the phenotypic diversity of rhizobial strains was not correlated with the soil origin. The phylogenetic tree (performed by the maximum likelihood algorithm) of IGS 16S-23S sequences showed that most of the rhizobial strains nodulating A. senegal were closely related to Mesorhizobium plurifarium. Our results showed that rhizobial taxa associated with A. senegal were mainly distributed according to soil physical and chemical characteristics, and A. senegal provenances. A large subset of A. senegal root-nodulating bacteria had high diversity that correlated with the most favourable environmental conditions. Understanding the diversity and distribution of rhizobial strains may be exploited in the formulation of A. senegal inoculants for different seed provenances for resilience to soil stresses in various environmental conditions.