期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Co-Doped Rare-Earth (La, Pr) and Co-Al Substituted M-Type Strontium Hexaferrite: Structural, Magnetic, and Mossbauer Spectroscopy Study
1
作者 Madhav L. Ghimire Dom L. Kunwar +3 位作者 Jiba N. Dahal dipesh neupane Sunghyun Yoon Sanjay R. Mishra 《Materials Sciences and Applications》 2020年第7期474-493,共20页
The present study investigates the influence of La<sup>3+</sup> and Pr<sup>3+</sup> doping on the structural, magnetic properties, and hyperfine fields of Sr<sub>0.7</sub>RE<sub&... The present study investigates the influence of La<sup>3+</sup> and Pr<sup>3+</sup> doping on the structural, magnetic properties, and hyperfine fields of Sr<sub>0.7</sub>RE<sub>0.3</sub>Fe<sub>12-2x</sub> Co<sub>x</sub>Al<sub>x</sub>O<sub>19</sub>, (RE: La<sup>3+</sup> and Pr<sup>3+</sup>, <em>x</em> = 0.0 - 0.8) hexaferrite compounds prepared via auto-combustion technique. The XRD analysis shows a linear decrease in a and c lattice and unit cell volume contraction with the content <em>x</em>. The room temperature magnetic study shows that for the Pr<sup>3+</sup> doped Sr<sub>0.7</sub>Pr<sub>0.3</sub>Fe<sub>12-2x</sub> Co<sub>x</sub>Al<sub>x</sub>O<sub>19</sub> (Pr<sup>3+</sup>-SrM), the magnetization value monotonically decreases while for La<sup>3+</sup> doped Sr<sub>0.7</sub>La<sub>0.3</sub>Fe<sub>12-2x</sub>Co<sub>x</sub>Al<sub>x</sub>O<sub>19</sub> (La<sup>3+</sup>-SrM) magnetization value shows a noticeable increase in magnetization value with <em>x</em>. The coercivity of the Pr<sup>3+</sup>-SrM compound was observed to decrease while that of the La<sup>3+</sup>-SrM compound showed a marked 40% increase at <em>x</em> = 0.2 (~5829 Oe) in comparison to undoped SrFe<sub>12</sub>O<sub>19</sub> (~3918 Oe). A difference in Curie temperature was also observed, with Tc ~ 525<span style="white-space:nowrap;">&deg;</span>C at <em>x</em> = 0.4 for Pr<sup>3+</sup>-SrM and Tc = 505<span style="white-space:nowrap;">&deg;</span>C for <em>x</em> = 0.4 for La<sup>3+</sup>-SrM compound. The observed differences in magnetic properties have been explained on the basis of the site occupancy of Co<sup>2+</sup> and Al<sup>3+</sup> in the presence of rare-earth ions. The presence of non-magnetic rare-earth ion, La<sup>3+</sup>, improved saturation magnetization, and coercivity and deemed suitable replacement for Sr<sup>2+</sup>. The hyperfine parameters namely quadrupole shift showed a decrease with the La3<sup>+</sup> or Pr<sup>3+</sup> doping independent of (Co<sup>2+</sup>-Al<sup>3+</sup>) ions doping. Overall, the Mossbauer analysis suggests that the (Co<sup>2+</sup>-Al<sup>3+</sup>) impurities prefer occupancy at 2<em>a</em> site. 展开更多
关键词 Doped Hexaferrite M-Type Hexaferrite X-Ray Diffraction MOSSBAUER
下载PDF
Structural, Magnetic, and Electrical Properties of RE Doped Sr<sub>0.82</sub>RE<sub>0.18</sub>Fe<sub>12-x</sub>Al<sub>x</sub>O<sub>19</sub>(RE = Gd, Pr, Sm) Compound
2
作者 Dom Lal Kunwar dipesh neupane +1 位作者 Jiba Nath Dahal Sanjay R.Mishra 《Advances in Materials Physics and Chemistry》 2019年第9期175-198,共24页
Among the family of ferrites, M-type hexaferrites has many industrial applications ranging from simple magnets to microwave devices. Improvement in magnetic and dielectric properties of ferrites is of continuous inter... Among the family of ferrites, M-type hexaferrites has many industrial applications ranging from simple magnets to microwave devices. Improvement in magnetic and dielectric properties of ferrites is of continuous interest. In this present work details study is done to observe the effect of co-doping of rare-earth (RE3+: Pr3+, Sm3+, and Gd3+) and aluminum in Sr0.82RE0.18Fe12-xAlxO19 (x = 0.0, 0.5, 1.0, 1.5, 2.0). The adopted samples were synthesized via autocombustion technique. Detailed synthesis, structural, magnetic, and electrical measurements of samples were performed to understand structural-magnetic-electrical property relationship. The Al3+ substitution for Fe3+ brings in a significant enhancement in coercivity but reduces magnetization due to the magnetic dilution effect. Additional coercivity enhancement was possible with RE3+ doping without affecting the magnetization of samples. Among all RE3+ doped samples, Pr3+ doped samples showed the highest Curie temperature, (Tc ~ 465℃), while Gd3+ doped samples showed little variation in dielectric properties in GHz frequency range. This makes RE3+ doped samples as an ideal candidate for high-frequency microwave applications. Pr3+ with oblate charge distribution (negative Stevens constant) was observed to substitute well into the lattice consequently bringing in desired improvements in physical properties of Sr0.82RE0.18Fe12-xAlxO19 ferrite. 展开更多
关键词 SR-FERRITE Nanocomposite Magnetization CURIE Temperature Coercivity Dielectric Constant
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部