Due to their low symmetry in crystal structure,low elastic modulus(~45 GPa)and low yielding stress,magnesium(Mg)alloys exhibit strong inelastic behaviors during unloading.As more and more Mg alloys are developed,their...Due to their low symmetry in crystal structure,low elastic modulus(~45 GPa)and low yielding stress,magnesium(Mg)alloys exhibit strong inelastic behaviors during unloading.As more and more Mg alloys are developed,their unloading behaviors were less investigated,especially for rare-earth(RE)Mg alloys.In the current work,the unloading behaviors of the RE Mg alloy ZE10 sheet is carefully studied by both mechanical tests and crystal plasticity modeling.In terms of the stress-strain curves,the inelastic strain,the chord modulus,and the active deformation mechanisms,the substantial anisotropy and the loading path dependency of the unloading behaviors of ZE10 sheets are characterized.The inelastic strains are generally larger under compressive Loading-Un Loading(L-UL)than under tensile L-UL,along the transverse direction(TD)than along the rolling direction(RD)under tensile L-UL,and along RD than along TD under compressive L-UL.The basal slip,twinning and de-twinning are found to be responsible for the unloading behaviors of ZE10 sheets.展开更多
The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop directio...The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop direction, essential for characterizing vascular stents, poses challenges in experimental testing based on standard specimens featuring a reduced cross section. This study utilizes an elasto-visco-plastic self-consistent polycrystal model(ΔEVPSC) with the predominant twinning reorientation(PTR) scheme as a numerical tool, offering an alternative to mechanical testing. For verification, various mechanical experiments, such as uniaxial tension, compression, notched-bar tension, three-point bending, and C-ring compression tests, were conducted. The resulting force vs. displacement curves and textures were then compared with those based on the ΔEVPSC model. The computational model's significance is highlighted by simulation results demonstrating that the differential hardening along with a weak strength differential effect observed in the Mg-10Gd sample is a result of the interplay between micromechanical deformation mechanisms and deformation-induced texture evolution. Furthermore, the study highlights that incorporating the axisymmetric texture from the as-received material incorporating the measured texture gradient significantly improves predictive accuracy on the strength in the hoop direction. Ultimately, the findings suggest that the ΔEVPSC model can effectively predict the mechanical behavior resulting from loading scenarios that are impossible to realize experimentally, emphasizing its valuable contribution as a digital twin.展开更多
The deformation behavior in magnesium single crystal under c-axis tension is investigated in a temperature range between 250 K and 570 K by molecular dynamics simulations. At a low temperature, twinning and shear band...The deformation behavior in magnesium single crystal under c-axis tension is investigated in a temperature range between 250 K and 570 K by molecular dynamics simulations. At a low temperature, twinning and shear bands are found to be the main deformation mechanisms. In particular, the {102} tension twins with the reorientation angle of about 90 °are observed in the simulations. The mechanisms of {102} twinning are illustrated by the simulated motion of atoms. Moreover, grain nucleation and growth are found to be accompanied with the {102} twinning. At temperatures above 450 K, the twin frequency decreases with increasing temperature. The {102} extension twin almost disappears at the temperature of 570 K. The non-basal slip plays an important role on the tensile deformation in magnesium single crystal at high temperatures.展开更多
基金the support of the National Natural Science Foundation of China(Nos.51775337,51675331,51975365)Major Projects of the Ministry of Education(No.311017)+5 种基金the Program of Introducing Talents of Discipline to Universities(Grant No.B06012)sponsored by the Shanghai Pujiang Program(18PJ1405000)the University of Sydney-Shanghai Jiao Tong University Partnership Collaboration Awardssupported by the Natural Sciences and Engineering Research Council of Canada(Nos.RGPIN-201606464)partly supported by the Materials Genome Initiative Center,Shanghai Jiao Tong UniversityThe University of Michigan and Shanghai Jiao Tong University(UM-SJTU)joint research project(AE604401)。
文摘Due to their low symmetry in crystal structure,low elastic modulus(~45 GPa)and low yielding stress,magnesium(Mg)alloys exhibit strong inelastic behaviors during unloading.As more and more Mg alloys are developed,their unloading behaviors were less investigated,especially for rare-earth(RE)Mg alloys.In the current work,the unloading behaviors of the RE Mg alloy ZE10 sheet is carefully studied by both mechanical tests and crystal plasticity modeling.In terms of the stress-strain curves,the inelastic strain,the chord modulus,and the active deformation mechanisms,the substantial anisotropy and the loading path dependency of the unloading behaviors of ZE10 sheets are characterized.The inelastic strains are generally larger under compressive Loading-Un Loading(L-UL)than under tensile L-UL,along the transverse direction(TD)than along the rolling direction(RD)under tensile L-UL,and along RD than along TD under compressive L-UL.The basal slip,twinning and de-twinning are found to be responsible for the unloading behaviors of ZE10 sheets.
基金supports from the National Research Foundation of Korea funded by the Ministry of Education (No. 2018R1A6A1A03024509, NRF-2023R1A2C1005121)
文摘The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop direction, essential for characterizing vascular stents, poses challenges in experimental testing based on standard specimens featuring a reduced cross section. This study utilizes an elasto-visco-plastic self-consistent polycrystal model(ΔEVPSC) with the predominant twinning reorientation(PTR) scheme as a numerical tool, offering an alternative to mechanical testing. For verification, various mechanical experiments, such as uniaxial tension, compression, notched-bar tension, three-point bending, and C-ring compression tests, were conducted. The resulting force vs. displacement curves and textures were then compared with those based on the ΔEVPSC model. The computational model's significance is highlighted by simulation results demonstrating that the differential hardening along with a weak strength differential effect observed in the Mg-10Gd sample is a result of the interplay between micromechanical deformation mechanisms and deformation-induced texture evolution. Furthermore, the study highlights that incorporating the axisymmetric texture from the as-received material incorporating the measured texture gradient significantly improves predictive accuracy on the strength in the hoop direction. Ultimately, the findings suggest that the ΔEVPSC model can effectively predict the mechanical behavior resulting from loading scenarios that are impossible to realize experimentally, emphasizing its valuable contribution as a digital twin.
基金supported by National Natural Science Foundation of China (GrantNos.11072026 and 10632020)the Fundamental Research Funds for the Central Universities, and finalized during a sabbatical leave of D.S. at the Graduate Institute of Ferrous Technology (G.I.F.T.) of POSTECHPohang, Korea as part of an International Outgoing Fellowship (Marie Curie Actions) of the 7th Programme of the European Commission
文摘The deformation behavior in magnesium single crystal under c-axis tension is investigated in a temperature range between 250 K and 570 K by molecular dynamics simulations. At a low temperature, twinning and shear bands are found to be the main deformation mechanisms. In particular, the {102} tension twins with the reorientation angle of about 90 °are observed in the simulations. The mechanisms of {102} twinning are illustrated by the simulated motion of atoms. Moreover, grain nucleation and growth are found to be accompanied with the {102} twinning. At temperatures above 450 K, the twin frequency decreases with increasing temperature. The {102} extension twin almost disappears at the temperature of 570 K. The non-basal slip plays an important role on the tensile deformation in magnesium single crystal at high temperatures.