The analysis of survival data is a major focus of statistics. Interval censored data reflect uncertainty as to the exact times the units failed within an interval. This type of data frequently comes from tests or situ...The analysis of survival data is a major focus of statistics. Interval censored data reflect uncertainty as to the exact times the units failed within an interval. This type of data frequently comes from tests or situations where the objects of interest are not constantly monitored. Thus events are known only to have occurred between the two observation periods. Interval censoring has become increasingly common in the areas that produce failure time data. This paper explores the statistical analysis of interval-censored failure time data with applications. Three different data sets, namely Breast Cancer, Hemophilia, and AIDS data were used to illustrate the methods during this study. Both parametric and nonparametric methods of analysis are carried out in this study. Theory and methodology of fitted models for the interval-censored data are described. Fitting of parametric and non-parametric models to three real data sets are considered. Results derived from different methods are presented and also compared.展开更多
文摘The analysis of survival data is a major focus of statistics. Interval censored data reflect uncertainty as to the exact times the units failed within an interval. This type of data frequently comes from tests or situations where the objects of interest are not constantly monitored. Thus events are known only to have occurred between the two observation periods. Interval censoring has become increasingly common in the areas that produce failure time data. This paper explores the statistical analysis of interval-censored failure time data with applications. Three different data sets, namely Breast Cancer, Hemophilia, and AIDS data were used to illustrate the methods during this study. Both parametric and nonparametric methods of analysis are carried out in this study. Theory and methodology of fitted models for the interval-censored data are described. Fitting of parametric and non-parametric models to three real data sets are considered. Results derived from different methods are presented and also compared.