This study presents a two-echelon inventory routing problem (2E-IRP) with an end-of-tour replenishment (ETR) policy whose distribution network consists of a supplier, several distribution centers (DCs) and several ret...This study presents a two-echelon inventory routing problem (2E-IRP) with an end-of-tour replenishment (ETR) policy whose distribution network consists of a supplier, several distribution centers (DCs) and several retailers on a multi-period planning horizon. A formulation of the problem based on vehicle indices is proposed in the form of a mixed integer linear program (MILP). The mathematical model of the problem is solved using a branch and cut (B&C) algorithm. The results of the tests are compared to the results of a branch and price (B&P) algorithm from the literature on 2E-IRP with a classical distribution policy. The results of the tests show that the B&C algorithm solves 197 out of 200 instances (98.5%). The comparison of the B&C and B&P results shows that 185 best solutions are obtained with the B&C algorithm on 197 instances (93.9%). Overall, the B&C algorithm achieves cost reductions ranging from 0.26% to 41.44% compared to the classic 2E-IRP results solved with the B&P algorithm, with an overall average reduction of 18.08%.展开更多
文摘This study presents a two-echelon inventory routing problem (2E-IRP) with an end-of-tour replenishment (ETR) policy whose distribution network consists of a supplier, several distribution centers (DCs) and several retailers on a multi-period planning horizon. A formulation of the problem based on vehicle indices is proposed in the form of a mixed integer linear program (MILP). The mathematical model of the problem is solved using a branch and cut (B&C) algorithm. The results of the tests are compared to the results of a branch and price (B&P) algorithm from the literature on 2E-IRP with a classical distribution policy. The results of the tests show that the B&C algorithm solves 197 out of 200 instances (98.5%). The comparison of the B&C and B&P results shows that 185 best solutions are obtained with the B&C algorithm on 197 instances (93.9%). Overall, the B&C algorithm achieves cost reductions ranging from 0.26% to 41.44% compared to the classic 2E-IRP results solved with the B&P algorithm, with an overall average reduction of 18.08%.