期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Local generalized empirical estimation of regression
1
作者 doksum kjell 《Science China Mathematics》 SCIE 2004年第1期114-127,共14页
Letf(x) be the density of a design variableX andm(x) = E[Y∣X = x] the regression function. Thenm(x) = G(x)/f(x), whereG(x) = rn(x)f(x). The Dirac δ-function is used to define a generalized empirical functionG n(x) f... Letf(x) be the density of a design variableX andm(x) = E[Y∣X = x] the regression function. Thenm(x) = G(x)/f(x), whereG(x) = rn(x)f(x). The Dirac δ-function is used to define a generalized empirical functionG n(x) forG(x) whose expectation equalsG(x). This generalized empirical function exists only in the space of Schwartz distributions, so we introduce a local polynomial of orderp approximation toG n(.) which provides estimators of the functionG(x) and its derivatives. The densityf(x) can be estimated in a similar manner. The resulting local generalized empirical estimator (LGE ) ofm(x) is exactly the Nadaraya-Watson estimator at interior points whenp = 1, but on the boundary the estimator automatically corrects the boundary effect. Asymptotic normality of the estimator is established. Asymptotic expressions for the mean squared errors are obtained and used in bandwidth selection. Boundary behavior of the estimators is investigated in details. We use Monte Carlo simulations to show that the proposed estimator withp = 1 compares favorably with the Nadaraya-Watson and the popular local linear regression smoother. 展开更多
关键词 boundary adaptive Dirac 5-function local polynomial local empirical Nadaraya-Watson estimator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部