Wind erosion is a major contributor to land degradation and desertification. Ac- cording to the Global Assessment of Human Induced Soil Degradation, the dryland territories of Mongolia are significantly affected by wi...Wind erosion is a major contributor to land degradation and desertification. Ac- cording to the Global Assessment of Human Induced Soil Degradation, the dryland territories of Mongolia are significantly affected by wind erosion. We used the wind erosion equation model in an ArcGIS environment to evaluate wind erosion across Mongolia. The individual factors of the wind erosion equation were parameterized using the following datasets: (a) monthly climatic data from 45 meteorological stations; (b) 16-day composites of MODIS Normalized Difference Vegetation Index data; (c) a SRTM DEM with a 90 m spatial resolution; and (d) the soil map of Mongolia. The results revealed the significant influence of aridity on wind erosion. The desert and semi-desert ecosystems were more vulnerable to wind erosion, hence more affected. The map of wind erosion revealed three major wind erosion regions where the maximum soil loss of 15-27 t/(hm2.a) was observed. In general, the wind erosion potentials for the entire country of Mongolia are 15-27 t/(hm2.a) in the deserts and semi-deserts, 10-15 t/(hm2.a) in the dry steppes and 5-10 t/(hm2.a) in the steppe regions.展开更多
基金Swiss Agency for Development and Cooperation(SDC),No.81013651
文摘Wind erosion is a major contributor to land degradation and desertification. Ac- cording to the Global Assessment of Human Induced Soil Degradation, the dryland territories of Mongolia are significantly affected by wind erosion. We used the wind erosion equation model in an ArcGIS environment to evaluate wind erosion across Mongolia. The individual factors of the wind erosion equation were parameterized using the following datasets: (a) monthly climatic data from 45 meteorological stations; (b) 16-day composites of MODIS Normalized Difference Vegetation Index data; (c) a SRTM DEM with a 90 m spatial resolution; and (d) the soil map of Mongolia. The results revealed the significant influence of aridity on wind erosion. The desert and semi-desert ecosystems were more vulnerable to wind erosion, hence more affected. The map of wind erosion revealed three major wind erosion regions where the maximum soil loss of 15-27 t/(hm2.a) was observed. In general, the wind erosion potentials for the entire country of Mongolia are 15-27 t/(hm2.a) in the deserts and semi-deserts, 10-15 t/(hm2.a) in the dry steppes and 5-10 t/(hm2.a) in the steppe regions.