期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Dynamics of Wave-Particle Duality
1
作者 Adriano Orefice Raffaele Giovanelli domenico ditto 《Journal of Applied Mathematics and Physics》 2018年第9期1840-1859,共20页
Both classical and wave-mechanical monochromatic waves may be treated in terms of exact ray-trajectories (encoded in the structure itself of Helmholtz-like equations) whose mutual coupling is the one and only cause of... Both classical and wave-mechanical monochromatic waves may be treated in terms of exact ray-trajectories (encoded in the structure itself of Helmholtz-like equations) whose mutual coupling is the one and only cause of any diffraction and interference process. In the case of Wave Mechanics, de Broglie’s merging of Maupertuis’s and Fermat’s principles (see Section 3) provides, without resorting to the probability-based guidance-laws and flow-lines of the Bohmian theory, the simple law addressing particles along the Helmholtz rays of the relevant matter waves. The purpose of the present research was to derive the exact Hamiltonian ray-trajectory systems concerning, respectively, classical electromagnetic waves, non-relativistic matter waves and relativistic matter waves. We faced then, as a typical example, the numerical solution of non-relativistic wave-mechanical equation systems in a number of numerical applications, showing that each particle turns out to “dances a wave-mechanical dance” around its classical trajectory, to which it reduces when the ray-coupling is neglected. Our approach reaches the double goal of a clear insight into the mechanism of wave-particle duality and of a reasonably simple computability. We finally compared our exact dynamical approach, running as close as possible to Classical Mechanics, with the hydrodynamic Bohmian theory, based on fluid-like “guidance laws”. 展开更多
关键词 Helmholtz Equation Wave Potential Hamilton-Jacobi Equation Wave Mechanics De Broglie’s Duality Matter Waves Guidance Laws Schrodinger Equations Klein-Gordon Equation
下载PDF
Primary Assumptions and Guidance Laws in Wave Mechanics
2
作者 Adriano Orefice Raffaele Giovanelli domenico ditto 《Journal of Applied Mathematics and Physics》 2018年第12期2621-2634,共14页
In an article written by Louis de Broglie in 1959 (30 years after the Nobel prize rewarding his foundation of Wave Mechanics), the most challenging problem raised by the Bohr, Heisenberg and Born Standard Quantum Mech... In an article written by Louis de Broglie in 1959 (30 years after the Nobel prize rewarding his foundation of Wave Mechanics), the most challenging problem raised by the Bohr, Heisenberg and Born Standard Quantum Mechanics (SQM) was pointed out in the renunciation to describe “a permanent localization in space, and therefore a well-defined trajectory” for any moving particle. This challenge is taken up in the present paper, showing that de Broglie’s Primary Assumption p=hk, predicting the wave-particle duality, does also allow to obtain from the energy-dependent form of the Schr&#246;dinger and/or Klein-Gordon equations the Guidance Laws piloting particles along well-defined trajectories. The energy-independent equations, on the other hand, may only give rise—both in SQM and in the Bohmian approach—to probabilistic descriptions, overshadowing the role of de Broglie’s matter waves in physical space. 展开更多
关键词 Helmholtz Equation Wave Potential Hamilton-Jacobi Equations Wave Mechanics de Broglie’s Duality Matter Waves Guidance Laws Schrodinger Equations Klein-Gordon Equations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部