期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Recycled graphite for more sustainable lithium-ion batteries
1
作者 Mayokun Olutogun Anna Vanderbruggen +5 位作者 Christoph Frey Martin Rudolph dominic bresser Stefano Passerini Helmholtz Institute Ulm(HIU) Ulm 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期15-24,共10页
The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recyc... The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite. 展开更多
关键词 ANODE GRAPHITE lithium-ion battery RECYCLING SUSTAINABILITY
下载PDF
Stepwise optimization of single-ion conducting polymer electrolytes for high-performance lithium-metal batteries
2
作者 Xu Dong Zhen Chen +4 位作者 Xinpei Gao Alexander Mayer Hai-Peng Liang Stefano Passerini dominic bresser 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期174-181,I0005,共9页
Single-ion conducting polymer electrolytes(SIPEs)are promising candidates for high-energy and highsafety lithium-metal batteries(LMBs).However,their insufficient ionic conductivity and electrochemical stability hinder... Single-ion conducting polymer electrolytes(SIPEs)are promising candidates for high-energy and highsafety lithium-metal batteries(LMBs).However,their insufficient ionic conductivity and electrochemical stability hinder their practical application.Herein,three new SIPEs,i.e.,poly(1,4-phenylene ether ether sulfone)-Li(PEES-Li),polysulfone-Li(PSF-Li),and hexafluoropolysulfone-Li(6FPSF-Li),all containing covalently tethered perfluorinated ionic side chains,have been designed,synthesized,and compared to investigate the influence of the backbone chemistry and the concentration of the ionic group on their electrochemical properties and cell performance.Especially,the trifluoromethyl group in the backbone and the concentration of the ionic function appear to play an essential role for the charge transport and stability towards oxidation,and the combination of both yields the best-performing SIPE with high ionic conductivity of ca.2.5×10^(-4)S cm^(-1),anodic stability of more than 4.8 V,and the by far highest capacity retention in Li‖LiNi0.6Co0.2Mn0.2O2cells. 展开更多
关键词 single-ion conductor Polymer electralyte Backbone chemistry NCMu22 cathode Lithium-metal battery
下载PDF
Towards an enhanced understanding of the particle size effect on conversion/alloying lithium-ion anodes
3
作者 Jakob Asenbauer Dominik Horny +2 位作者 Mayokun Olutogun Katrin Schulz dominic bresser 《Materials Futures》 2024年第1期150-164,共15页
Conversion/alloying materials(CAMs)represent a potential alternative to graphite as a Li-ion anode active material,especially for high-power applications.So far,however,essentially all studies on CAMs have been dealin... Conversion/alloying materials(CAMs)represent a potential alternative to graphite as a Li-ion anode active material,especially for high-power applications.So far,however,essentially all studies on CAMs have been dealing with nano-sized particles,leaving the question of how the performance(and the de-/lithiation mechanism in general)is affected by the particle size.Herein,we comparatively investigate four different samples of Zn_(0.9)Co_(0.1)O with a particle size ranging from about 30 nm to a few micrometers.The results show that electrodes made of larger particles are more susceptible to fading due to particle displacement and particle cracking.The results also show that the conversion-type reaction in particular is affected by an increasing particle size,becoming less reversible due to the formation of relatively large transition metal(TM)and alloying metal nanograins upon lithiation,thus hindering an efficient electron transport within the initial particle,while the alloying contribution remains essentially unaffected.The generality of these findings is confirmed by also investigating Sn_(0.9)Fe_(0.1)O_(2) as a second CAM with a substantially greater contribution of the alloying reaction and employing Fe instead of Co as a TM dopant. 展开更多
关键词 particle size CONVERSION ALLOYING ANODE lithium-ion battery
原文传递
Beneficial impact of lithium bis(oxalato)borate as electrolyte additive for high-voltage nickel-rich lithium-battery cathodes
4
作者 Fanglin Wu Angelo Mullaliu +6 位作者 Thomas Diemant Dominik Stepien Tatjana NParac-Vogt Jae-Kwang Kim dominic bresser Guk-Tae Kim Stefano Passerini 《InfoMat》 SCIE CSCD 2023年第8期67-80,共14页
High-voltage nickel-rich layered cathodes possess the requisite,such as excellent discharge capacity and high energy density,to realize lithium batteries with higher energy density.However,such materials suffer from s... High-voltage nickel-rich layered cathodes possess the requisite,such as excellent discharge capacity and high energy density,to realize lithium batteries with higher energy density.However,such materials suffer from structural and interfacial instability at high voltages(>4.3 V).To reinforce the stability of these cathode materials at elevated voltages,lithium borate salts are investigated as electrolyte additives to generate a superior cathode-electrolyte interphase.Specifically,the use of lithium bis(oxalato)borate(LiBOB)leads to an enhanced cycling stability with a capacity retention of 81.7%.Importantly,almost no voltage hysteresis is detected after 200 cycles at 1C.This outstanding electrochemical performance is attributed to an enhanced structural and interfacial stability,which is attained by suppressing the generation of micro-cracks and the superficial structural degradation upon cycling.The improved stability stems from the formation of a fortified borate-containing interphase which protects the highly reactive cathode from parasitic reactions with the electrolyte.Finally,the decomposition process of LiBOB and the possible adsorption routes to the cathode surface are deduced and elucidated. 展开更多
关键词 cathode electrolyte interphase electrolyte additive high voltage cathodes LIBOB nickel-rich cathodes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部