We report the systematic investigation of the effects of oxygen on the synthesis of 3 p sub-family armchair graphene nanoribbons(3 p-AGNRs),which revealed a strong catalytic effect with a reduction in the reaction tem...We report the systematic investigation of the effects of oxygen on the synthesis of 3 p sub-family armchair graphene nanoribbons(3 p-AGNRs),which revealed a strong catalytic effect with a reduction in the reaction temperature by approximately 180 K without degradation of the AGNRs.Poly(para-phenylene)(3-AGNR)was generated through Ullmann-type coupling of4,4’’-dibromo-p-terphenyl on Cu(111),which was then converted into wider 3 p-AGNRs via lateral fusion.Scanning tunneling microscopy(STM)and X-ray photoelectron spectroscopy demonstrated the formation of different ribbons up to 12-AGNR,which contained regions exhibiting increased STM contrast that we attribute to the intercalation of Br atoms during lateral fusion.展开更多
基金supported by the Ministry of Science and Technology(2017YFA0205002)the National Natural Science Foundation of China(21790053,51821002)the Collaborative Innovation Center of Suzhou Nano Science&Technology。
文摘We report the systematic investigation of the effects of oxygen on the synthesis of 3 p sub-family armchair graphene nanoribbons(3 p-AGNRs),which revealed a strong catalytic effect with a reduction in the reaction temperature by approximately 180 K without degradation of the AGNRs.Poly(para-phenylene)(3-AGNR)was generated through Ullmann-type coupling of4,4’’-dibromo-p-terphenyl on Cu(111),which was then converted into wider 3 p-AGNRs via lateral fusion.Scanning tunneling microscopy(STM)and X-ray photoelectron spectroscopy demonstrated the formation of different ribbons up to 12-AGNR,which contained regions exhibiting increased STM contrast that we attribute to the intercalation of Br atoms during lateral fusion.