期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Position and attitude determination by integrated GPS/SINS/TS for feed support system of FAST
1
作者 Ming-Hui Li Peng Jiang +1 位作者 dong jun yul Jing Hai Sun 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2020年第9期192-200,共9页
This paper presents a new measurement system based on integration method that can provide all-weather dependability and higher precision for the measurement of FAST's feed support system.The measurement system con... This paper presents a new measurement system based on integration method that can provide all-weather dependability and higher precision for the measurement of FAST's feed support system.The measurement system consists of three types of measuring equipments,and a processing software with the core data fusion algorithm.The Strapdown Inertial Navigation System(SINS)can autonomously measure the position,speed and attitude of the carrier.Its own shortcoming is that the measurement data diverge rapidly over time.SINS must combine the Global Positioning System(GPS)and the Total Station(TS)to obtain high-precision measurement data.The Kalman filtering algorithm is adopted for the integration measurement system,which is an optimal algorithm to estimate the measurement errors.A series of tests are carried out to evaluate the performance.For the feed cabin,the maximum RMS of the position is 14.56 mm,the maximum RMS of the attitude is 0.095,these values are less than 15 mm and 0.1°as the precision for measuring the feed cabin.For the Stewart manipulator,the maximum RMS of the position is 2.99 mm,the maximum RMS of the attitude is 0.093°,these values are less than 3 mm and 0.1°as the precision for measuring the Stewart manipulator.As a result,the new measurement meets the requirement of measurement precision for FAST's feed support system. 展开更多
关键词 FAST Integration measurement system GPS/SINS/TS Kalman Filter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部