期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Enhanced nitrite electroreduction to ammonia via interfacial dual-site adsorption
1
作者 Xiaokang Chen Shengliang zhai +4 位作者 Yi Tan Le Su dong zhai Wei-Qiao Deng Hao Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期328-335,共8页
The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving t... The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving the NH3 selectivity is to facilitate adsorption and activation of NO_(2)^(−),which is generally undesirable in unitary species.In this work,an efficient NO_(2)^(−)RR catalyst is constructed by cooperating Pd with In2O3,in which NO_(2)^(−)could adsorb on interfacial dual-site through“Pd–N–O–In”linkage,leading to strengthened NO_(2)^(−)adsorption and easier N=O bond cleavage than that on unitary Pd or In2O3.Moreover,the Pd/In_(2)O_(3)composite exhibits moderate H^(*)adsorption,which may facilitate protonation kinetics while inhibiting competitive HER.As a result,it exhibits a fairly high NH_(3)yield rate of 622.76 mmol h^(−1)g^(−1)cat with a Faradaic efficiency(FE)of 95.72%,good selectivity of 91.96%,and cycling stability towards the NO_(2)^(−)RR,surpassing unitary In_(2)O_(3)and Pd/C electrocatalysts.Besides,computed results indicate that NH_(3)production on Pd/In_(2)O_(3)follows the deoxidation to hydrogenation pathway.This work highlights the significance of H^(*)and NO_(2)^(−)adsorption modulation and N=O activation in NO_(2)^(−)RR electrochemistry by creating synergy between a mediocre catalyst with an appropriate cooperator. 展开更多
关键词 Dual-site adsorption Nitrite electroreduction AMMONIA Pd Hydrogenation
下载PDF
Dual-conductive metal-organic framework@MXene heterogeneity stabilizes lithium-ion storage 被引量:1
2
作者 Lanju Sun Honglei Wang +7 位作者 Shengliang zhai Jikai Sun Xu Fang Hongyan Yang dong zhai Chengcheng Liu Wei-Qiao Deng Hao Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期368-376,I0009,共10页
Although a few pristine metal-organic frameworks(MOFs) of graphene analogue topology exhibit high intrinsic electrical conductivity, their use in lithium-ion batteries(LIBs) is still hampered by unfavorable Li+adsorpt... Although a few pristine metal-organic frameworks(MOFs) of graphene analogue topology exhibit high intrinsic electrical conductivity, their use in lithium-ion batteries(LIBs) is still hampered by unfavorable Li+adsorption energy(ΔEa). In this paper, an electroconductive ferrocene-based MOF@MXene heterostructure is built to provide stable anodes for Li+storage. Charge density difference and planar average potential charge density show substantial redistribution of charges at the interfaces, transferring from MXene to MOF layers. Moreover, density functional theory(DFT) calculations reveal that the interaction between MXene and MOF significantly increases the ΔEa. As a result, the heterostructure anode exhibits high capacities and outstanding cycling stability with a capacity retention of 80% after 5000 cycles at 5 A g^(-1), outperforming mono-component MXene and MOF. Furthermore, the heterostructure anode is built into a full cell with a commercial NCM 532 cathode, delivering a high energy density of 611 Wh kg^(-1)and power density of 7600 W kg^(-1). The developed conductive MOF@MXene heterogeneity for improved LIB offers valuable insights into the design of advanced electrode materials for energy storage. 展开更多
关键词 MXene Metal-organic framework HETEROSTRUCTURE Lithium-ion battery Adsorption energy
下载PDF
Heteroatom doping regulates the catalytic performance of singleatom catalyst supported on graphene for ORR
3
作者 Ji-Kai Sun Yu-Wei Pan +4 位作者 Meng-Qian Xu Lei Sun Shaolong Zhang Wei-Qiao Deng dong zhai 《Nano Research》 SCIE EI CSCD 2024年第3期1086-1093,共8页
Replacing fossil fuels with fuel cells is a feasible way to reduce global energy shortages and environmental pollution.However,the oxygen reduction reaction(ORR)at the cathode has sluggish kinetics,which limits the de... Replacing fossil fuels with fuel cells is a feasible way to reduce global energy shortages and environmental pollution.However,the oxygen reduction reaction(ORR)at the cathode has sluggish kinetics,which limits the development of fuel cells.It is significant to develop catalysts with high catalytic activity of ORR.The single-atom catalysts(SACs)of Pt supported on heteroatom-doped graphene are potential candidates for ORR.Here we studied the SACs of Pt with different heteroatoms doping and screened out Pt-C_(4) and Pt-C_(3)O_(1) structures with only 0.13 V overpotential for ORR.Meanwhile,it is found that B atoms doping could weaken the adsorption capacity of Pt,while N or O atoms doping could enhance it.This regularity was verified on Fe SACs.Through the electronic interaction analysis between Pt and adsorbate,we explained the mechanism of this regularity and further proposed a new descriptor named corrected d-band center(ε_(d-corr))to describe it.This descriptor is an appropriate reflection of the number of free electrons of the SACs,which could evaluate its adsorption capacity.Our work provides a purposeful regulatory strategy for the design of ORR catalysts. 展开更多
关键词 single-atom catalyst(SAC) oxygen reduction reaction(ORR) heteroatom doping corrected d-band center descriptor
原文传递
3D printing of conch-like scaffolds for guiding cell migration and directional bone growth 被引量:2
4
作者 Boshi Feng Meng Zhang +6 位作者 Chen Qin dong zhai Yufeng Wang Yanling Zhou Jiang Chang Yufang Zhu Chengtie Wu 《Bioactive Materials》 SCIE CSCD 2023年第4期127-140,共14页
Regeneration of severe bone defects remains an enormous challenge in clinic.Developing regenerative scaffolds to directionally guide bone growth is a potential strategy to overcome this hurdle.Conch,an interesting cre... Regeneration of severe bone defects remains an enormous challenge in clinic.Developing regenerative scaffolds to directionally guide bone growth is a potential strategy to overcome this hurdle.Conch,an interesting creature widely spreading in ocean,has tough spiral shell that can continuously grow along the spiral direction.Herein,inspired by the physiological features of conches,a conch-like(CL)scaffold based onβ-TCP bioceramic material was successfully prepared for guiding directional bone growth via digital light processing(DLP)-based 3D printing.Benefiting from the spiral structure,the CL scaffolds significantly improved cell adhesion,proliferation and osteogenic differentiation in vitro compared to the conventional 3D scaffolds.Particularly,the spiral structure in the scaffolds could efficiently induce cells to migrate from the bottom to the top of the scaffolds,which was like“cells climbing stairs”.Furthermore,the capability of guiding directional bone growth for the CL scaffolds was demonstrated by a special half-embedded femoral defects model in rabbits.The new bone tissue could consecutively grow into the protruded part of the scaffolds along the spiral cavities.This work provides a promising strategy to construct biomimetic biomaterials for guiding directional bone tissue growth,which offers a new treatment concept for severe bone defects,and even limb regeneration. 展开更多
关键词 3D printing Spiral structure Conch-like scaffolds Cell migration Tissue regeneration Severe bone defects
原文传递
Multifunctional mesoporous bioactive glass/upconversion nanoparticle nanocomposites with strong red emission to monitor drug delivery and stimulate osteogenic differentiation of stem cells 被引量:4
5
作者 Fangfang Wang dong zhai +1 位作者 Chengtie Wu Jiang Chang 《Nano Research》 SCIE EI CAS CSCD 2016年第4期1193-1208,共16页
For the therapy and regeneration of bone defects resulting from malignant bone tumors, it is necessary to develop multifunctional biomaterials that are able to deliver therapeutic drugs, monitor drug release, and stim... For the therapy and regeneration of bone defects resulting from malignant bone tumors, it is necessary to develop multifunctional biomaterials that are able to deliver therapeutic drugs, monitor drug release, and stimulate bone formation. Herein, a multifunctional mesoporous bioactive glass (MBG)/upconversion nanoparticle (UCNP) nanocomposite [UCNPs@SiO2@mSiO2-XCa (X = 0, 5, 10, 15, and 20)] with the ability to deliver anti-cancer drugs, monitor drug release, and stimulate osteogenic differentiation of bone marrow stromal cells (BMSCs) was successfully prepared using a layer-by-layer strategy. The nanocomposite spheres possess a core--sheU structure composed of UCNPs and a mesoporous SiO2/Ca layer with a uniform size distribution of 100 nm. The incorporation of Ca into the nanocomposites induced phase transformation from a pure hexagonal phase to a cubic phase, and facilitated the occurrence of red emission, which significantly improved fluorescence penetration for deep tissue imaging. In addition, since the red emission strongly overlaps with the maximum absorbance of the anti-cancer drug zinc phthalocyanine (ZnPc), red luminescence could be strongly quenched by ZnPc. Consequently, drug release could be quantified by monitoring changes in fluorescence intensity. Furthermore, the incorporation of Ca into MBG/UCNP nanocomposites remarkably improved bioactivity, i.e., it stimulated apatite mineralization in simulated body fluids and enhanced cell proliferation and bone-related gene expression in BMSCs for the concentration range of 200-500 ~g/mL. Our results suggest that the prepared MBG/UCNP nanocomposites are useful for the therapy and regeneration of bone defects resulting from malignant bone tumors owing to their distinct multifunctionality, including strong red emission and functions in drug-delivery monitoring and osteostimulation. 展开更多
关键词 multifunctionalnanocomposites UPCONVERSION osteoblastic activity drug release monitoring bone tumors
原文传递
Single-atom catalysts modified by molecular groups for electrochemical nitrogen reduction
6
作者 Zengxi Wei Yuchang Liu +7 位作者 Hongjie Liu Shaopeng Wang Minchen Hou Liwei Wang dong zhai Shuangliang Zhao Kefu Yu Shaolong Zhang 《Nano Research》 SCIE EI CSCD 2022年第10期9663-9669,共7页
Electrochemical nitrogen reduction reaction(eNRR)is one of the most important chemical reactions for the production of ammonia under ambient environment.However,the lack of in-depth understanding of the structure-acti... Electrochemical nitrogen reduction reaction(eNRR)is one of the most important chemical reactions for the production of ammonia under ambient environment.However,the lack of in-depth understanding of the structure-activity relationship impedes the development of high-performance catalysts for ammonia production.Herein,the density functional theory(DFT)calculations are performed to reveal the structure–activity relationship for the single-atom catalysts(SACs)supported on g-C_(3)N_(4),which is modified by molecular groups(i.e.,H,O,and OH).The computational results demonstrate that the W-based SACs are beneficial to produce ammonia with a low limiting potential(UL).Particularly,the W-OH@g-C_(3)N_(4) catalyst exhibits an ultralow UL of−0.22 V for eNRR.And the competitive eNRR selectivity can be identified by the dominant*N2 adsorption free energy than that of*H.Our findings provide a theoretical basis for the synthesis of efficient catalysts to produce ammonia. 展开更多
关键词 AMMONIA nitrogen reduction reaction single-atom catalysts(SACs) molecular groups density functional theory(DFT)calculations
原文传递
Bioinspired laminated bioceramics with high toughness for bone tissue engineering
7
作者 Jinzhou Huang dong zhai +3 位作者 Jianmin Xue Tian Li Dudi Ren Chengtie Wu 《Regenerative Biomaterials》 SCIE EI 2022年第1期739-749,共11页
For the research of biomaterials in bone tissue engineering,it is still a challenge to fabricate bioceramics that overcome brittleness whilemaintaining the great biological performance.Here,inspired by the toughness o... For the research of biomaterials in bone tissue engineering,it is still a challenge to fabricate bioceramics that overcome brittleness whilemaintaining the great biological performance.Here,inspired by the toughness of naturalmaterials with hierarchical laminated structure,we presented a directional assembly-sintering approach to fabricate laminated MXene/calcium silicate-based(L-M/CS)bioceramics.Benefiting from the orderly laminated structure,the LM/CS bioceramics exhibited significantly enhanced toughness(2.23MPa·m^(1/2))and high flexural strength(145MPa),which were close to the mechanical properties of cortical bone.Furthermore,the L-M/CS bioceramics possessed more suitable degradability than traditional CaSiO_(3)bioceramics due to the newly formed CaTiSiO_(5)after sintering.Moreover,the L-M/CS bioceramics showed good biocompatibility and could stimulate the expression of osteogenesisrelated genes.The mechanism of promoting osteogenic differentiation had been shown to be related to theWnt signaling pathway.This work not only fabricated calciumsilicate-based bioceramics with excellentmechanical and biological properties for bone tissue engineering but also provided a strategy for the combination of bionics and bioceramics. 展开更多
关键词 laminated bioceramics MXene bioinspired structure high toughness bone tissue engineering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部