期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Overexpression of Arabidopsis YUCCA6 in Potato Results in High-Auxin Developmental Phenotypes and Enhanced Resistance to Water Deficit 被引量:15
1
作者 Jeong Im Kim Dongwon Baek +12 位作者 Hyeong Cheol Park Hyun Jin Chun dong-ha oh Min Kyung Lee Joon-Yung Cha Woe-Yeon Kim Min Chul Kim Woo Sik Chung Hans J. Bohner Sang Yeol Lee Ray A. Bressan Shin-Woo Lee Dae-Jin Yun 《Molecular Plant》 SCIE CAS CSCD 2013年第2期337-349,共13页
Indole-3-acetic acid (IAA), a major plant auxin, is produced in both tryptophan-dependent and tryptophan-independent pathways. A major pathway in Arabidopsis thaliana generates IAA in two reactions from tryptophan. ... Indole-3-acetic acid (IAA), a major plant auxin, is produced in both tryptophan-dependent and tryptophan-independent pathways. A major pathway in Arabidopsis thaliana generates IAA in two reactions from tryptophan. Step one converts tryptophan to indole-3-pyruvic acid (IPA) by tryptophan aminotransferases followed by a rate-limiting step converting IPA to IAA catalyzed by YUCCA proteins. We identified eight putative StYUC (Solanum tuberosum YUCCA) genes whose deduced amino acid sequences share 50%-70% identity with those of Arabidopsis YUCCA proteins. All include canonical, conserved YUCCA sequences: FATGY motif, FMO signature sequence, and FAD-binding and NADP-binding sequences. In addition, five genes were found with -50% amino acid sequence identity to Arabidopsis trypto-phan aminotransferases. Transgenic potato (Solanum tuberosum cv. Jowon) constitutively overexpressing Arabidopsis AtYUC6 displayed high-auxin phenotypes such as narrow downward-curled leaves, increased height, erect stature, and longevity. Transgenic potato plants overexpressing AtYUC6 showed enhanced drought tolerance based on reduced water loss. The phenotype was correlated with reduced levels of reactive oxygen species in leaves. The results suggest a func-tional YUCCA pathway of auxin biosynthesis in potato that may be exploited to alter plant responses to the environment. 展开更多
关键词 Solanum tuberosum POTATO Arabidopsis thaliana yuc6-1D YUCCA StYUCCA StTAA auxin drought.
原文传递
Sodium Stress in the Halophyte Thellungiella halophila and Transcriptional Changes in a thsos1-RNA Interference Line 被引量:9
2
作者 dong-ha oh Qingqiu Gong +6 位作者 Alex Ulanov Quan Zhang Youzhi Li Wenying Ma Dae-Jin Yun Ray A. Bressan Hans J. Bohnert 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2007年第10期1484-1496,共13页
The plasma membrane Na+/H+-antiporter salt overly sensitive1 (SOS1) from the halophytic Arabidopsis-relative Thellungiella halophila (ThSOS1) shows conserved sequence and domain structure with the orthologous ge... The plasma membrane Na+/H+-antiporter salt overly sensitive1 (SOS1) from the halophytic Arabidopsis-relative Thellungiella halophila (ThSOS1) shows conserved sequence and domain structure with the orthologous genes from Arabidopsis thaliana and other plants. When expression of ThSOSt was reduced by RNA interference (RNAi), pronounced characteristics of salt-sensitivity were observed. We were interested in monitoring altered transcriptional responses between Thellungiella wild type and thsost-4, a representative RNAi line with particular emphasis on root responses to salt stress at 350 mmol/L NaCI, a concentration that is only moderately stressful for mature wild type plants. Transcript profiling revealed several functional categories of genes that were differently affected in wild-type and RNAi plants. Down-regulation of SOS1 resulted in different gene expression even in the absence of stress. The pattern of gene induction in the RNAi plant under salt stress was similar to that of glycophytic Arabidopsis rather than that of wild type Thellungiella. The RNAi plants failed to down-regulate functions that are normally reduced in wild type Thellungiella upon stress and did not up-regulate functions that characterize the Thellungiella salt stress response. Metabolite changes observed in wild type Thellungiella after salt stress were less pronounced or absent in RNAi plants. Transcript and metabolite behavior suggested SOS1 functions including but also extending its established function as a sodium transporter. The down-regulation of ThSOS1 converted the halophyte Thellungiella into a salt-sensitive plant. 展开更多
关键词 salt stress salt overly sensitive1 RNA interference Thellungiella halophila transcript profiling.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部