期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ambarzumyan's Theorem for the Dirac Operator on Equilateral Tree Graphs
1
作者 dong-jie wu Xin-Jian XU Chuan-Fu YANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第2期568-576,共9页
The classical Ambarzumyan’s theorem states that if the Neumann eigenvalues of the Sturm-Liouville operator-d^(2)/dx^(2)+q with an integrable real-valued potential q on[0,π] are {n^(2):n≥0},then q=0 for almost all x... The classical Ambarzumyan’s theorem states that if the Neumann eigenvalues of the Sturm-Liouville operator-d^(2)/dx^(2)+q with an integrable real-valued potential q on[0,π] are {n^(2):n≥0},then q=0 for almost all x∈[0,π].In this work,the classical Ambarzumyan’s theorem is extended to the Dirac operator on equilateral tree graphs.We prove that if the spectrum of the Dirac operator on graphs coincides with the unperturbed case,then the potential is identically zero. 展开更多
关键词 dirac operator quantum graph Ambarzumyan’s theorem inverse spectral problem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部