期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Estimating the yield stress of soft materials via laser-induced breakdown spectroscopy
1
作者 龚书航 李亚举 +7 位作者 钱东斌 叶晋瑞 赵扣 曾强 陈良文 张少锋 杨磊 马新文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期428-432,共5页
Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectrosc... Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectroscopy(LIBS)of soft materials.We discovered a reversal phenomenon in the trend of energy dependence of plasma emission intensity:increasing initially and then decreasing separated by a well-defined critical energy.The trend reversal is attributed to the laser-induced recoil pressure at the critical energy just matching the sample's yield strength.As a result,a one-to-one correspondence can be well established between the samples'yield stress and the critical energy that is easily obtainable from LIBS measurements.This allows us to propose an innovative method for estimating the yield stress of soft materials via LIBS with attractive advantages including in-situ remote detection,real-time data collection,and minimal destructive to sample. 展开更多
关键词 laser-induced breakdown spectroscopy soft materials yield stress
下载PDF
Estimating the grain size of microgranular material using laser-induced breakdown spectroscopy combined with machine learning algorithms
2
作者 张朝 李亚举 +9 位作者 杨光辉 曾强 李小龙 陈良文 钱东斌 孙对兄 苏茂根 杨磊 张少锋 马新文 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期129-137,共9页
Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piec... Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piecewise univariate model must be constructed to estimate grain size due to the complex dependence of the plasma formation environment on grain size.In the present work,we tentatively construct a unified calibration model suitable for LIBS-based estimation of those grain sizes.Specifically,two unified multivariate calibration models are constructed based on back-propagation neural network(BPNN)algorithms using feature selection strategies with and without considering prior information.By detailed analysis of the performances of the two multivariate models,it was found that a unified calibration model can be successfully constructed based on BPNN algorithms for estimating the grain size in the range of tens to hundreds of micrometers.It was also found that the model constructed with a priorguided feature selection strategy had better prediction performance.This study has practical significance in developing the technology for material analysis using LIBS,especially when the LIBS signal exhibits a complex dependence on the material parameter to be estimated. 展开更多
关键词 laser-induced breakdown spectroscopy machine learning randomly packed microgranular materials
下载PDF
Laser-induced breakdown spectroscopy as a method for millimeter-scale inspection of surface flatness
3
作者 Jinrui YE Yaju LI +8 位作者 Zhao ZHANG Xinwei WANG Kewei TAO qiang ZENG Liangwen CHEN dongbin qian Shaofeng ZHANG Lei YANG Xinwen MA 《Plasma Science and Technology》 SCIE EI CAS 2024年第9期148-155,共8页
A non-contact method for millimeter-scale inspection of material surface flatness via Laser-Induced Breakdown Spectroscopy(LIBS)is investigated experimentally.The experiment is performed using a planished surface of a... A non-contact method for millimeter-scale inspection of material surface flatness via Laser-Induced Breakdown Spectroscopy(LIBS)is investigated experimentally.The experiment is performed using a planished surface of an alloy steel sample to simulate its various flatness,ranging from 0 to 4.4 mm,by adjusting the laser focal plane to the surface distance with a step length of 0.2 mm.It is found that LIBS measurements are successful in inspecting the flatness differences among these simulated cases,implying that the method investigated here is feasible.It is also found that,for achieving the inspection of surface flatness within such a wide range,when univariate analysis is applied,a piecewise calibration model must be constructed.This is due to the complex dependence of plasma formation conditions on the surface flatness,which inevitably complicates the inspection procedure.To solve the problem,a multivariate analysis with the help of Back-Propagation Neural Network(BPNN)algorithms is applied to further construct the calibration model.By detailed analysis of the model performance,we demonstrate that a unified calibration model can be well established based on BPNN algorithms for unambiguous millimeter-scale range inspection of surface flatness with a resolution of about 0.2 mm. 展开更多
关键词 laser-induced breakdown spectroscopy machine learning surface flatness
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部