期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Co-electrolysis of ethylene glycol and carbon dioxide for formate synthesis
1
作者 dongfeng du Fusong Kang +2 位作者 Shiru Yang Bin Shao Jingshan Luo 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第5期1539-1544,共6页
Co-electrolysis of waste plastics and carbon dioxide(CO_(2)) into value-added chemicals or fuels is a promising pathway for a sustainable society, but efficient and selective conversion remains a challenge. Herein, a ... Co-electrolysis of waste plastics and carbon dioxide(CO_(2)) into value-added chemicals or fuels is a promising pathway for a sustainable society, but efficient and selective conversion remains a challenge. Herein, a gold-mediated nickel hydroxide(Au/Ni(OH)_(2)) is developed to oxidize waste plastic-derived ethylene glycol(EG) into formate. In-situ electrochemical experiments and theoretical results reveal that the introduction of Au favors the redox properties and EG adsorption behavior of Ni(OH)_(2). The Au/Ni(OH)_(2) catalyst shows an excellent formate selectivity of >90% at high current densities of above 100 m A cm^(-2). When coupled with sputtered bismuth(Bi) cathode for CO_(2) reduction, a high formate Faradic efficiency(FE) of 188.2% at 200 m A cm^(-2)and a good formate productivity of 7.33 mmol m^(-2)s^(-1)at 10 A are obtained in a flow cell and a zero-gap membrane electrode assembly(MEA) cell, respectively. This work demonstrates a promising strategy to convert waste plastics and CO_(2) into valuable products. 展开更多
关键词 waste plastic upcycling ethylene glycol oxidation carbon dioxide reduction ELECTROCATALYSIS formate synthesis
原文传递
A high-energy-density sodium-ion full battery based on tin anode 被引量:3
2
作者 Mingming Song Chenchen Wang +2 位作者 dongfeng du Fujun Li Jun Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第5期616-621,共6页
Sodium-ion batteries(SIBs) have been considered as promising candidates for large-scale energy storage, owing to the high abundance and low cost of sodium(Na) resources. However, the development of full SIB has been h... Sodium-ion batteries(SIBs) have been considered as promising candidates for large-scale energy storage, owing to the high abundance and low cost of sodium(Na) resources. However, the development of full SIB has been hindered by low energy density because of the sluggish kinetics of large Na^+. Here, we report a full SIB with commercial tin(Sn) anode, cross-linked Na_3V_2(PO_4)_3/carbon nanotubes composites(NVP-CNT) cathode, and ether-based electrolyte. Sn is capable of delivering high reversible capacity via formation of Na15 Sn4 and stable solid-electrolyte interface(SEI) in initial cycles. Meanwhile, the NASICON-type NVP enables ultrafast and stable Na^+intercalation/extraction, and the incorporation of CNT can improve its electrical conductivity. The assembled full SIB delivers high output voltage of ~3.2 V, high energy density of 253.4 W h kg^(-1) at1600 W kg^(-1) based on total mass of both cathode and anode, and remarkable capacity retention of 96.1% after 180 cycles. These merit construction of high-energy full SIBs and will promote the development of SIBs. 展开更多
关键词 sodium-ion BATTERY Sn Na3V2(PO4)3-CNT ether-based electrolyte energy DENSITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部