Objective: To investigate the clinicopathological features, survival and prognostic factors for gastroenteropancreatic neuroendocrine neoplasms(GEP-NENs) in a Chinese population.Methods: We investigated 154 consec...Objective: To investigate the clinicopathological features, survival and prognostic factors for gastroenteropancreatic neuroendocrine neoplasms(GEP-NENs) in a Chinese population.Methods: We investigated 154 consecutive patients(88 males, 66 females; median age 56 years, age range 9-86 years) diagnosed with GEP-NENs between 2001 and 2013 at The Affiliated Hospital of Qingdao University. Demographic, clinical and pathological variables and survival data were retrieved.Results: The pancreas was the most common site of involvement(63/154, 40.9%). Tumor size varied from 0.3 to 16.0 cm(median, 1.2 cm). The patients were followed up for a median period of 22 months(range, 1-157 months). The estimated 3- and 5-year overall survival(OS) rates for all patients were 84.0% and 81.9%, respectively. Multivariate analysis showed that larger tumor size, lymphatic metastases and distant metastases were significant predictors for poor survival outcome.Conclusions: Our data provide further information on the clinicopathological features of GEP-NENs in China. Additionally, we identified tumor size, lymphatic metastases and distant metastases as independent prognostic factors for long-term survival.展开更多
A long-term simulation for the period 1990–2010 is conducted with the latest version of the International Centre for Theoretical Physics' Regional Climate Model(RegCM4), driven by ERA-Interim boundary conditions a...A long-term simulation for the period 1990–2010 is conducted with the latest version of the International Centre for Theoretical Physics' Regional Climate Model(RegCM4), driven by ERA-Interim boundary conditions at a grid spacing of 25 km. The Community Land Model(CLM) is used to describe land surface processes, with updates in the surface parameters,including the land cover and surface emissivity. The simulation is compared against observations to evaluate the model performance in reproducing the present day climatology and interannual variability over the 10 main river basins in China,with focus on surface air temperature and precipitation. Temperature and precipitation from the ERA-Interim reanalysis are also considered in the model assessment. Results show that the model reproduces the present day climatology over China and its main river basins, with better performances in June–July–August compared to December–January–February(DJF).In DJF, we find a warm bias at high latitudes, underestimated precipitation in the south, and overestimated precipitation in the north. The model in general captures the observed interannual variability, with greater skill for temperature. We also find an underestimation of heavy precipitation events in eastern China, and an underestimation of consecutive dry days in northern China and the Tibetan Plateau. Similar biases for both mean climatology and extremes are found in the ERA-Interim reanalysis, indicating the difficulties for climate models in simulating extreme monsoon climate events over East Asia.展开更多
Bacterial infection due to coronary angiography is an uncommon but important complication of percutaneous coronary intervention (PCI) which is responsible for significant morbidity and extended hospital stay. The reas...Bacterial infection due to coronary angiography is an uncommon but important complication of percutaneous coronary intervention (PCI) which is responsible for significant morbidity and extended hospital stay. The reasons for this symptom are still unclear. We report a case of local groin abscess two weeks after the latest procedure. The reasons responsible for the groin abscess in this case might be diabetes mellitus without being properly controlled, left ventricular (LV) systolic dysfunction, multiple operations in the same site, the usage of vascular closure device (VCD), and long time pressure after the procedure. We should pay enough attention to these risk factors in the future clinical practice to avoid this serious complication.展开更多
Extreme weather events such as persistent high temperatures, heavy rains or sudden cold waves in Shanxi Province in China have brought great losses and disasters to people’s production and life. It is of great practi...Extreme weather events such as persistent high temperatures, heavy rains or sudden cold waves in Shanxi Province in China have brought great losses and disasters to people’s production and life. It is of great practical significance to study the temporal and spatial distribution characteristics of extreme weather events and the circulation background field. We selected daily high temperature data (≥35°C), daily minimum temperature data and daily precipitation data (≥50 mm) from 109 meteorological stations in Shanxi Province, China from 1981 to 2010, then set the period in which the temperature is ≥35°C for more than 3 days as a high temperature extreme weather event, define the station in which 24 hour cumulative precipitation is ≥50 mm precipitation on a certain day (20 - 20 hours, Beijing time) as a rainstorm weather, and determine the cold air activity with daily minimum temperature dropped by more than 8°C for 24 hours, or decreased by 10°C for 48 h, and a daily minimum temperature of ≤4°C as a cold weather process. We statistically analyze the temporal and spatial characteristics and trends of high temperature, heavy rain and cold weather and the circulation background field. We count the number of extreme weather events such as persistent high temperatures, heavy rains and cold weather frosts in Shanxi, and analyze the temporal and spatial distribution characteristics, trends and general circulation background of extreme weather events. We analyze and find out the common features of the large-scale circulation background field in various extreme weather events. Through the study of the temporal and spatial distribution characteristics of extreme weather events in Shanxi, including persistent high temperature, heavy rain or sudden cold wave frost weather, we summarize the large-scale circulation characteristics of such extreme weather events. It will provide some reference for future related weather forecasting.展开更多
With the continuous development of science technology,Building Information Modeling(BIM)technology has slowly garnered wider attention from designers and architecture professionals.BIM,the 3D model-based process that ...With the continuous development of science technology,Building Information Modeling(BIM)technology has slowly garnered wider attention from designers and architecture professionals.BIM,the 3D model-based process that allows for efficient planning,designing,constructing and managing buildings and infrastructure,could potentially revolutionize the building architectural discipline.This paper analyses the significance of the application of BIM technology in architectural lighting design,as well as the application points and the trends.展开更多
Yield prediction is the primary goal of genomic selection(GS)-assisted crop breeding.Because yield is a complex quantitative trait,making predictions from genotypic data is challenging.Transfer learning can produce an...Yield prediction is the primary goal of genomic selection(GS)-assisted crop breeding.Because yield is a complex quantitative trait,making predictions from genotypic data is challenging.Transfer learning can produce an effective model for a target task by leveraging knowledge from a different,but related,source domain and is considered a great potential method for improving yield prediction by integrating multi-trait data.However,it has not previously been applied to genotype-to-phenotype prediction owing to the lack of an efficient implementation framework.We therefore developed TrG2P,a transfer-learning-based framework.TrG2P first employs convolutional neural networks(CNN)to train models using non-yield-trait phenotypic and genotypic data,thus obtaining pre-trained models.Subsequently,the convolutional layer parameters from these pre-trained models are transferred to the yield prediction task,and the fully connected layers are retrained,thus obtaining fine-tuned models.Finally,the convolutional layer and the first fully connected layer of the fine-tuned models are fused,and the last fully connected layer is trained to enhance prediction performance.We applied TrG2P to five sets of genotypic and phenotypic data from maize(Zea mays),rice(Oryza sativa),and wheat(Triticum aestivum)and compared its model precision to that of seven other popular GS tools:ridge regression best linear unbiased prediction(rrBLUP),random forest,support vector regression,light gradient boosting machine(LightGBM),CNN,DeepGS,and deep neural network for genomic prediction(DNNGP).TrG2P improved the accuracy of yield prediction by 39.9%,6.8%,and 1.8%in rice,maize,and wheat,respectively,compared with predictions generated by the best-performing comparison model.Our work therefore demonstrates that transfer learning is an effective strategy for improving yield prediction by integrating information from non-yield-trait data.We attribute its enhanced prediction accuracy to the valuable information available from traits associated with yield and to training dataset augmentation.The Python implementation of TrG2P is available at https://github.com/lijinlong1991/TrG2P.The web-based tool is available at http://trg2p.ebreed.cn:81.展开更多
To optimize fitness, plants must efficiently allocate their resources between growth and defense. Although phytohormone crosstalk has emerged as a major player in balancing growth and defense, the genetic basis by whi...To optimize fitness, plants must efficiently allocate their resources between growth and defense. Although phytohormone crosstalk has emerged as a major player in balancing growth and defense, the genetic basis by which plants man age this balance remai ns elusive. We previously ide ntified a quantitative disease . resistance locus, qRfg2, in maize (Zea mays) that protects against the fungal disease Gibberella stalk rot. Here, through map-based cloning, we demonstrate that the causal gene at qRfg2 is ZmAuxRPI, which encodes a plastid stroma-localized auxin-regulated protein. ZmAuxRPI responded quickly to pathogen challenge with a rapid yet transient reduction in expression that led to arrested root growth but enhanced resista nee to Gibberella stalk rot and Fusarium ear rot. ZmAuxRPI was show n to promote the biosynthesis of indole-3-acetic acid (IAA), while suppressing the formation of benzoxazinoid defense compounds. ZmAuxRPI presumably acts as a resource regulator modulating indole-3-glycerol phosphate and/or indole flux at the branch point between the IAA and benzoxazinoid biosynthetic pathways. The concerted interplay between IAA and benzoxazinoids can regulate the growth-defense balance in a timely and efficient manner to optimize plant fitness.展开更多
A thorough understanding of the quantitative trait loci (QTLs) that underlie agronomically important traits in crops would greatly increase agricultural productivity. Although advances have been made in QTL cloning,...A thorough understanding of the quantitative trait loci (QTLs) that underlie agronomically important traits in crops would greatly increase agricultural productivity. Although advances have been made in QTL cloning, the majority of QTLs remain unknown because of their low heritability and minor contributions to phenotypic performance. Here we summarize the key advantages and disad- vantages of current QTL fine-mapping methodologies, and then introduce a sequential QTL fine-mapping strategy based on both genotypes and phenotypes of progeny derived from recombinants. With this mapping strategy, experimental errors could be dramat- ically diminished so as to reveal the authentic genetic effect of target QTLs. The number of progeny required to detect QTLs atvarious R2 values was calculated, and the backcross generation suitable to start QTL fine-mapping was also estimated. This mapping strategy has proved to be very powerful in narrowing down QTL regions, particularly minor-effect QTLs, as revealed by fine-mapping of various resistance QTLs in maize. Application of this sequential QTL mapping strategy should accelerate cloning of agronomically important QTLs, which is currently a substantial challenge in crops.展开更多
In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to...In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to observe the transient characteristics of gas-solid two-phase flow. The experimen- tal results indicated that solids throughput increased with increasing solids-gas ratio when the conveying pipeline was not plugged. Moreover, the optimum operating state was determined for the 1000 m long conveying pipeline with a throttle plate of 26 orifices. At this state the solids throughput was about 12.97 t/h. Additionally, the transportation pattern of fly ash gradually changed from sparse-dense flow to partial and plug flows with increasing conveying distance because of the conveying pressure loss, These experimental results provide important reference data for the development of pneumatic conveying technology.展开更多
The etiology of complex diseases is characterized by the interaction between the genome and environmental conditions and the interface of epigenetics may be a central mechanism. Current technologies already allow us h...The etiology of complex diseases is characterized by the interaction between the genome and environmental conditions and the interface of epigenetics may be a central mechanism. Current technologies already allow us high-throughput profiling of epigenetic patterns at genome level. However, our understanding of the epigenetic processes remains limited. Twins are special samples in genetic studies due to their genetic similarity and rearing-environment sharing. In the past decades, twins have made a great contribution in dissecting the genetic and environmental contributions to human diseases and complex traits. In the era of functional genomics, the valuable samples of twins are helping to bridge the gap between gene activity and environmental conditions through epigenetic mech- anisms unlimited to DNA sequence variations. We review the recent progresses in using twins to study disease-related molecular epigenetic pbenotypes and link them with environmental exposures especially early life events. Various study designs and application issues will be highlighted and discussed with aim at making uses of twins in assessing the environmental impact on epigenetic changes during the development of complex diseases.展开更多
Nickel based magnetic nanocrystals have been widely applied in magnetic and catalytic facilities.Tunable magnetic properties of nickel can be easily obtained via non-magnetic doping or phase transformation.However,pha...Nickel based magnetic nanocrystals have been widely applied in magnetic and catalytic facilities.Tunable magnetic properties of nickel can be easily obtained via non-magnetic doping or phase transformation.However,phase transformation from face centered cubic(fcc)to hexagonal close packed(hcp)induced magnetism adjustment of Ni are always confused with nickel carbide(Ni_(3)C),due to the similar atomic structures of hcp-Ni and Ni3C.Here,we present series of Au@Ni-carbide magnetic materials achieved from the controlled carbonation of Au@Ni core-shell structures,whose magnetism is tunable by adjusting the amount of carbon in the Ni layer.Ex-situ hard X-ray absorption spectroscopy(XAS)at the metal K edge and soft XAS at both metal L edge and carbon K edge provide solid evidence for the carbonation process from fcc-Ni to Ni_(x)C,rather than phase transformation to hcp-Ni.Further investigation reveals that the magnetism of the hybrids is mainly contributed from the residual fcc-Ni.The result represents an accurate and effective way to distinguish hexagonal Ni_(3)C from hcp-Ni,and provides the pathway to control magnetism of Ni-based materials for applications.展开更多
We consider small perturbations of analytic non-twist area preserving mappings,and prove the existence of invariant curves with prescribed frequency by KAM iteration.Generally speaking,the frequency of invariant curve...We consider small perturbations of analytic non-twist area preserving mappings,and prove the existence of invariant curves with prescribed frequency by KAM iteration.Generally speaking,the frequency of invariant curve may undergo some drift,if the twist condition is not satisfied.But in this paper,we deal with a degenerate situation where the unperturbed rotation angle function r→w+r^(2n+1)is odd order degenerate at r=0,and prove the existence of invariant curve without any drift in its frequency.Furthermore,we give a more general theorem on the existence of invariant curves with prescribed frequency for non-twist area preserving mappings and discuss the case of degeneracy with various orders.展开更多
Kidney disease is manifested in a wide variety of phenotypes,many of which have an important hereditary component.To delineate the genotypic and phenotypic spectrum of pediatric nephropathy,a multicenter registration ...Kidney disease is manifested in a wide variety of phenotypes,many of which have an important hereditary component.To delineate the genotypic and phenotypic spectrum of pediatric nephropathy,a multicenter registration system is being imple-mented based on the Chinese Children Genetic Kidney Disease Database(CCGKDD).In this study,all the patients with kidney and urological diseases were recruited from 2014 to 2020.Genetic analysis was conducted using exome sequencing for families with multiple affected individuals with nephropathy or clinical suspicion of a genetic kidney disease owing to early-onset or extrarenal features.The genetic diagnosis was confirmed in 883 of 2256(39.1%)patients from 23 provinces in China.Phenotypic profiles showed that the primary diagnosis included steroid-resistant nephrotic syndrome(SRNS,23.5%),glomerulonephritis(GN,32.2%),congenital anomalies of the kidney and urinary tract(CAKUT,21.2%),cystic renal disease(3.9%),renal calcinosis/stone(3.6%),tubulopathy(9.7%),and chronic kidney disease of unknown etiology(CKDu,5.8%).The pathogenic variants of 105 monogenetic disorders were identified.Ten distinct genomic disorders were identified as pathogenic copy number variants(CNVs)in 11 patients.The diagnostic yield differed by subgroups,and was highest in those with cystic renal disease(66.3%),followed by tubulopathy(58.4%),GN(57.7%),CKDu(43.5%),SRNS(29.2%),renal calcinosis/stone(29.3%)and CAKUT(8.6%).Reverse phenotyping permitted correct identification in 40 cases with clinical reassessment and unexpected genetic conditions.We present the results of the largest cohort of children with kidney disease in China where diagnostic exome sequencing was performed.Our data demonstrate the utility of family-based exome sequencing,and indicate that the combined analysis of genotype and phenotype based on the national patient registry is pivotal to the genetic diagnosis of kidney disease.展开更多
文摘Objective: To investigate the clinicopathological features, survival and prognostic factors for gastroenteropancreatic neuroendocrine neoplasms(GEP-NENs) in a Chinese population.Methods: We investigated 154 consecutive patients(88 males, 66 females; median age 56 years, age range 9-86 years) diagnosed with GEP-NENs between 2001 and 2013 at The Affiliated Hospital of Qingdao University. Demographic, clinical and pathological variables and survival data were retrieved.Results: The pancreas was the most common site of involvement(63/154, 40.9%). Tumor size varied from 0.3 to 16.0 cm(median, 1.2 cm). The patients were followed up for a median period of 22 months(range, 1-157 months). The estimated 3- and 5-year overall survival(OS) rates for all patients were 84.0% and 81.9%, respectively. Multivariate analysis showed that larger tumor size, lymphatic metastases and distant metastases were significant predictors for poor survival outcome.Conclusions: Our data provide further information on the clinicopathological features of GEP-NENs in China. Additionally, we identified tumor size, lymphatic metastases and distant metastases as independent prognostic factors for long-term survival.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2016YFA0600704)the National Natural Science Foundation(Grant No.41375104)the Climate Change Specific Fund of China(Grant Nos.CCSF201626 and CCSF201509)
文摘A long-term simulation for the period 1990–2010 is conducted with the latest version of the International Centre for Theoretical Physics' Regional Climate Model(RegCM4), driven by ERA-Interim boundary conditions at a grid spacing of 25 km. The Community Land Model(CLM) is used to describe land surface processes, with updates in the surface parameters,including the land cover and surface emissivity. The simulation is compared against observations to evaluate the model performance in reproducing the present day climatology and interannual variability over the 10 main river basins in China,with focus on surface air temperature and precipitation. Temperature and precipitation from the ERA-Interim reanalysis are also considered in the model assessment. Results show that the model reproduces the present day climatology over China and its main river basins, with better performances in June–July–August compared to December–January–February(DJF).In DJF, we find a warm bias at high latitudes, underestimated precipitation in the south, and overestimated precipitation in the north. The model in general captures the observed interannual variability, with greater skill for temperature. We also find an underestimation of heavy precipitation events in eastern China, and an underestimation of consecutive dry days in northern China and the Tibetan Plateau. Similar biases for both mean climatology and extremes are found in the ERA-Interim reanalysis, indicating the difficulties for climate models in simulating extreme monsoon climate events over East Asia.
文摘Bacterial infection due to coronary angiography is an uncommon but important complication of percutaneous coronary intervention (PCI) which is responsible for significant morbidity and extended hospital stay. The reasons for this symptom are still unclear. We report a case of local groin abscess two weeks after the latest procedure. The reasons responsible for the groin abscess in this case might be diabetes mellitus without being properly controlled, left ventricular (LV) systolic dysfunction, multiple operations in the same site, the usage of vascular closure device (VCD), and long time pressure after the procedure. We should pay enough attention to these risk factors in the future clinical practice to avoid this serious complication.
文摘Extreme weather events such as persistent high temperatures, heavy rains or sudden cold waves in Shanxi Province in China have brought great losses and disasters to people’s production and life. It is of great practical significance to study the temporal and spatial distribution characteristics of extreme weather events and the circulation background field. We selected daily high temperature data (≥35°C), daily minimum temperature data and daily precipitation data (≥50 mm) from 109 meteorological stations in Shanxi Province, China from 1981 to 2010, then set the period in which the temperature is ≥35°C for more than 3 days as a high temperature extreme weather event, define the station in which 24 hour cumulative precipitation is ≥50 mm precipitation on a certain day (20 - 20 hours, Beijing time) as a rainstorm weather, and determine the cold air activity with daily minimum temperature dropped by more than 8°C for 24 hours, or decreased by 10°C for 48 h, and a daily minimum temperature of ≤4°C as a cold weather process. We statistically analyze the temporal and spatial characteristics and trends of high temperature, heavy rain and cold weather and the circulation background field. We count the number of extreme weather events such as persistent high temperatures, heavy rains and cold weather frosts in Shanxi, and analyze the temporal and spatial distribution characteristics, trends and general circulation background of extreme weather events. We analyze and find out the common features of the large-scale circulation background field in various extreme weather events. Through the study of the temporal and spatial distribution characteristics of extreme weather events in Shanxi, including persistent high temperature, heavy rain or sudden cold wave frost weather, we summarize the large-scale circulation characteristics of such extreme weather events. It will provide some reference for future related weather forecasting.
文摘With the continuous development of science technology,Building Information Modeling(BIM)technology has slowly garnered wider attention from designers and architecture professionals.BIM,the 3D model-based process that allows for efficient planning,designing,constructing and managing buildings and infrastructure,could potentially revolutionize the building architectural discipline.This paper analyses the significance of the application of BIM technology in architectural lighting design,as well as the application points and the trends.
基金This research was funded by the STI2030-Major Projects(no.2023ZD0406104)the Beijing Postdoctoral Research Foundation(no.2023-ZZ-116).
文摘Yield prediction is the primary goal of genomic selection(GS)-assisted crop breeding.Because yield is a complex quantitative trait,making predictions from genotypic data is challenging.Transfer learning can produce an effective model for a target task by leveraging knowledge from a different,but related,source domain and is considered a great potential method for improving yield prediction by integrating multi-trait data.However,it has not previously been applied to genotype-to-phenotype prediction owing to the lack of an efficient implementation framework.We therefore developed TrG2P,a transfer-learning-based framework.TrG2P first employs convolutional neural networks(CNN)to train models using non-yield-trait phenotypic and genotypic data,thus obtaining pre-trained models.Subsequently,the convolutional layer parameters from these pre-trained models are transferred to the yield prediction task,and the fully connected layers are retrained,thus obtaining fine-tuned models.Finally,the convolutional layer and the first fully connected layer of the fine-tuned models are fused,and the last fully connected layer is trained to enhance prediction performance.We applied TrG2P to five sets of genotypic and phenotypic data from maize(Zea mays),rice(Oryza sativa),and wheat(Triticum aestivum)and compared its model precision to that of seven other popular GS tools:ridge regression best linear unbiased prediction(rrBLUP),random forest,support vector regression,light gradient boosting machine(LightGBM),CNN,DeepGS,and deep neural network for genomic prediction(DNNGP).TrG2P improved the accuracy of yield prediction by 39.9%,6.8%,and 1.8%in rice,maize,and wheat,respectively,compared with predictions generated by the best-performing comparison model.Our work therefore demonstrates that transfer learning is an effective strategy for improving yield prediction by integrating information from non-yield-trait data.We attribute its enhanced prediction accuracy to the valuable information available from traits associated with yield and to training dataset augmentation.The Python implementation of TrG2P is available at https://github.com/lijinlong1991/TrG2P.The web-based tool is available at http://trg2p.ebreed.cn:81.
基金the Ministry of Agriculture and Rural Affairs of the people's Republic of China (grant numbers 2018ZX0800917B) and the National Natural Science Foundation of China (31671704).
文摘To optimize fitness, plants must efficiently allocate their resources between growth and defense. Although phytohormone crosstalk has emerged as a major player in balancing growth and defense, the genetic basis by which plants man age this balance remai ns elusive. We previously ide ntified a quantitative disease . resistance locus, qRfg2, in maize (Zea mays) that protects against the fungal disease Gibberella stalk rot. Here, through map-based cloning, we demonstrate that the causal gene at qRfg2 is ZmAuxRPI, which encodes a plastid stroma-localized auxin-regulated protein. ZmAuxRPI responded quickly to pathogen challenge with a rapid yet transient reduction in expression that led to arrested root growth but enhanced resista nee to Gibberella stalk rot and Fusarium ear rot. ZmAuxRPI was show n to promote the biosynthesis of indole-3-acetic acid (IAA), while suppressing the formation of benzoxazinoid defense compounds. ZmAuxRPI presumably acts as a resource regulator modulating indole-3-glycerol phosphate and/or indole flux at the branch point between the IAA and benzoxazinoid biosynthetic pathways. The concerted interplay between IAA and benzoxazinoids can regulate the growth-defense balance in a timely and efficient manner to optimize plant fitness.
基金supported by the National Basic Research Program of China (973) (2009CB118401)the Hi-tech Research and Development Program of China (863)
文摘A thorough understanding of the quantitative trait loci (QTLs) that underlie agronomically important traits in crops would greatly increase agricultural productivity. Although advances have been made in QTL cloning, the majority of QTLs remain unknown because of their low heritability and minor contributions to phenotypic performance. Here we summarize the key advantages and disad- vantages of current QTL fine-mapping methodologies, and then introduce a sequential QTL fine-mapping strategy based on both genotypes and phenotypes of progeny derived from recombinants. With this mapping strategy, experimental errors could be dramat- ically diminished so as to reveal the authentic genetic effect of target QTLs. The number of progeny required to detect QTLs atvarious R2 values was calculated, and the backcross generation suitable to start QTL fine-mapping was also estimated. This mapping strategy has proved to be very powerful in narrowing down QTL regions, particularly minor-effect QTLs, as revealed by fine-mapping of various resistance QTLs in maize. Application of this sequential QTL mapping strategy should accelerate cloning of agronomically important QTLs, which is currently a substantial challenge in crops.
基金the financial support from the National Science and Technology Support Program of China(no.2012BAB13B04)
文摘In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to observe the transient characteristics of gas-solid two-phase flow. The experimen- tal results indicated that solids throughput increased with increasing solids-gas ratio when the conveying pipeline was not plugged. Moreover, the optimum operating state was determined for the 1000 m long conveying pipeline with a throttle plate of 26 orifices. At this state the solids throughput was about 12.97 t/h. Additionally, the transportation pattern of fly ash gradually changed from sparse-dense flow to partial and plug flows with increasing conveying distance because of the conveying pressure loss, These experimental results provide important reference data for the development of pneumatic conveying technology.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2009CM111)
文摘The etiology of complex diseases is characterized by the interaction between the genome and environmental conditions and the interface of epigenetics may be a central mechanism. Current technologies already allow us high-throughput profiling of epigenetic patterns at genome level. However, our understanding of the epigenetic processes remains limited. Twins are special samples in genetic studies due to their genetic similarity and rearing-environment sharing. In the past decades, twins have made a great contribution in dissecting the genetic and environmental contributions to human diseases and complex traits. In the era of functional genomics, the valuable samples of twins are helping to bridge the gap between gene activity and environmental conditions through epigenetic mech- anisms unlimited to DNA sequence variations. We review the recent progresses in using twins to study disease-related molecular epigenetic pbenotypes and link them with environmental exposures especially early life events. Various study designs and application issues will be highlighted and discussed with aim at making uses of twins in assessing the environmental impact on epigenetic changes during the development of complex diseases.
基金This work was supported by the National Natural Science Foundation of China(NSFC,Nos.21801140,51532001,51667009,21771014,and 52002010)。
文摘Nickel based magnetic nanocrystals have been widely applied in magnetic and catalytic facilities.Tunable magnetic properties of nickel can be easily obtained via non-magnetic doping or phase transformation.However,phase transformation from face centered cubic(fcc)to hexagonal close packed(hcp)induced magnetism adjustment of Ni are always confused with nickel carbide(Ni_(3)C),due to the similar atomic structures of hcp-Ni and Ni3C.Here,we present series of Au@Ni-carbide magnetic materials achieved from the controlled carbonation of Au@Ni core-shell structures,whose magnetism is tunable by adjusting the amount of carbon in the Ni layer.Ex-situ hard X-ray absorption spectroscopy(XAS)at the metal K edge and soft XAS at both metal L edge and carbon K edge provide solid evidence for the carbonation process from fcc-Ni to Ni_(x)C,rather than phase transformation to hcp-Ni.Further investigation reveals that the magnetism of the hybrids is mainly contributed from the residual fcc-Ni.The result represents an accurate and effective way to distinguish hexagonal Ni_(3)C from hcp-Ni,and provides the pathway to control magnetism of Ni-based materials for applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.11001048,11571072,11771077,11871041)the Natural Science Foundation of Jiangsu Province,China(No.BK20201262).
文摘We consider small perturbations of analytic non-twist area preserving mappings,and prove the existence of invariant curves with prescribed frequency by KAM iteration.Generally speaking,the frequency of invariant curve may undergo some drift,if the twist condition is not satisfied.But in this paper,we deal with a degenerate situation where the unperturbed rotation angle function r→w+r^(2n+1)is odd order degenerate at r=0,and prove the existence of invariant curve without any drift in its frequency.Furthermore,we give a more general theorem on the existence of invariant curves with prescribed frequency for non-twist area preserving mappings and discuss the case of degeneracy with various orders.
基金J.R.is supported by National Natural Science Foundation of China(NSFC-8182207)Shanghai Academic/Technology Research Leader(19XD1420600)Chinese Academy of Medical Sciences(2019-RC-HL_020).
文摘Kidney disease is manifested in a wide variety of phenotypes,many of which have an important hereditary component.To delineate the genotypic and phenotypic spectrum of pediatric nephropathy,a multicenter registration system is being imple-mented based on the Chinese Children Genetic Kidney Disease Database(CCGKDD).In this study,all the patients with kidney and urological diseases were recruited from 2014 to 2020.Genetic analysis was conducted using exome sequencing for families with multiple affected individuals with nephropathy or clinical suspicion of a genetic kidney disease owing to early-onset or extrarenal features.The genetic diagnosis was confirmed in 883 of 2256(39.1%)patients from 23 provinces in China.Phenotypic profiles showed that the primary diagnosis included steroid-resistant nephrotic syndrome(SRNS,23.5%),glomerulonephritis(GN,32.2%),congenital anomalies of the kidney and urinary tract(CAKUT,21.2%),cystic renal disease(3.9%),renal calcinosis/stone(3.6%),tubulopathy(9.7%),and chronic kidney disease of unknown etiology(CKDu,5.8%).The pathogenic variants of 105 monogenetic disorders were identified.Ten distinct genomic disorders were identified as pathogenic copy number variants(CNVs)in 11 patients.The diagnostic yield differed by subgroups,and was highest in those with cystic renal disease(66.3%),followed by tubulopathy(58.4%),GN(57.7%),CKDu(43.5%),SRNS(29.2%),renal calcinosis/stone(29.3%)and CAKUT(8.6%).Reverse phenotyping permitted correct identification in 40 cases with clinical reassessment and unexpected genetic conditions.We present the results of the largest cohort of children with kidney disease in China where diagnostic exome sequencing was performed.Our data demonstrate the utility of family-based exome sequencing,and indicate that the combined analysis of genotype and phenotype based on the national patient registry is pivotal to the genetic diagnosis of kidney disease.