期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mixed-dimensional stacked nanocomposite structures for a specific wavelength-selectable ambipolar photoresponse
1
作者 Young Jae park Jaeho Shim +9 位作者 Joo Song Lee Kyu Seung Lee Ji-Yeon Kim Kang Bok Ko Sang-Youp Yim Seongjun Kim Hoon-Kyu Shin donghee park Yong Ju Yun Dong Ick Son 《Nano Research》 SCIE EI CSCD 2024年第6期5549-5558,共10页
Mixed-dimensional composite structures using zero-dimensional(0D)quantum dots(QDs)and two-dimensional(2D)transition metal dichalcogenides(TMDs)materials are expected to attract great interest in optoelectronics due to... Mixed-dimensional composite structures using zero-dimensional(0D)quantum dots(QDs)and two-dimensional(2D)transition metal dichalcogenides(TMDs)materials are expected to attract great interest in optoelectronics due to the potential to generate new optical properties.Here,we report on the unique optical characteristics of a devices with mixed dimensional vertically stacked structures based on tungsten diselenide(WSe_(2))/CdSeS QDs monolayer/molybdenum disulfide(MoS_(2))(2D/0D/2D).Specifically,it exhibits an ambipolar photoresponse characteristic,with a negative photoresponse observed in the 400-600 nm wavelength range and a positive photoresponse appeared at 700 nm wavelength.It resulted in the high negative responsivity of up to 52.22 mA·W^(−1)under 400 nm,which is 163 times higher than that of the photodetector without CdSeS QDs.We also demonstrated the negative photoresponse,which could be due to increased carrier collision probability and non-radiative recombination.Device modeling and simulation reveal that Auger recombination among the types of non-radiative recombination is the main cause of negative photocurrent generation.Consequently,we discovered ambipolar photoresponse near a specific wavelength corresponding to the energy of quantum dots.Our study revealed interesting phenomenon in the mixed low-dimensional stacked structure and paved the way to exploit it for the development of innovative photodetection materials as well as for optoelectronic applications. 展开更多
关键词 mixed-dimension quantum dot HETEROSTRUCTURE PHOTODETECTOR ambipolar photoresponse
原文传递
High-responsivity InAs quantum well photo-FET integrated on Si substrates for extended-range short-wave infrared photodetector applications
2
作者 DAEHWAN AHN SUNGHAN JEON +8 位作者 †HOYOUNG SUH SEUNGWAN WOO RAFAEL JUMAR CHU DAEHWAN JUNG WON JUN CHOI donghee park JIN-DONG SONG WOO-YOUNG CHOI JAE-HOON HAN 《Photonics Research》 SCIE EI CAS CSCD 2023年第8期1465-1473,共9页
Low-intensity light detection necessitates high-responsivity photodetectors.To achieve this,we report In_(0.53)Ga_(0.47)As∕In As∕In_(0.53)Ga_(0.47)As quantum well(InAs QW)photo-field-effect-transistors(photo-FETs)in... Low-intensity light detection necessitates high-responsivity photodetectors.To achieve this,we report In_(0.53)Ga_(0.47)As∕In As∕In_(0.53)Ga_(0.47)As quantum well(InAs QW)photo-field-effect-transistors(photo-FETs)integrated on a Si substrate using direct wafer bonding.Structure of the In As QW channel was carefully designed to achieve higher effective mobility and a narrower bandgap compared with a bulk In_(0.53)Ga_(0.47)As,while suppressing the generation of defects due to lattice relaxations.High-performance 2.6 nm In As QW photo-FETs were successfully demonstrated with a high on/off ratio of 10~5 and a high effective mobility of 2370 cm^(2)∕(V·s).The outstanding transport characteristics in the InAs QW channel result in an optical responsivity 1.8 times greater than InGaAs photo-FETs and the fast rising/falling times.Further,we experimentally confirmed that the InAs QW photo-FET can detect light in the short-wavelength infrared(SWIR;1.0–2.5μm)near 2μm thanks to bandgap engineering through In As QW structures.Our result suggests that the InAs QW photo-FET is promising for high-responsivity and extended-range SWIR photodetector applications. 展开更多
关键词 RESPONSIVITY QUANTUM wave
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部