Using lightning observations from the Fengyun-4A Lightning Mapping Imager(FY-4A LMI),best-track data from the Shanghai Typhoon Institute,bright temperature(TBB)data from Himawari-8 satellite,and composite reflectivity...Using lightning observations from the Fengyun-4A Lightning Mapping Imager(FY-4A LMI),best-track data from the Shanghai Typhoon Institute,bright temperature(TBB)data from Himawari-8 satellite,and composite reflectivity(CR)data from the South China radar network,we investigate the spatiotemporal distribution of lightning activity and convective evolution during the landfall of Super Typhoon Mangkhut,the strongest landing typhoon in China in2018.Three stages of active total lightning are observed,and differences of lightning characteristics between the inner core and the outer rainbands are present.The onset of inner-core lightning outbreak is about 4 h ahead of the maximum intensity of the storm,providing indicative information on the change of typhoon intensity.Lightning rates in the outer rainbands increase rapidly 12 h before the landfall,and lightning activity is mainly confined in the outer rainbands after the landfall.A good correlation in hourly variation is shown between lightning rates from the LMI and TBBs from the satellite.The averaged TBB within the inner core reaches its minimum(–80℃)when the innercore lightning outbreak occurs,indicating the occurrence and enhancement of deep convection there.Lightning locations observed by the LMI has a good spatial correspondence with regions of low TBBs and high CRs,revealing the monitoring capability of the LMI to lightning activity and deep convection in landing typhoons.Comparisons between the World Wide Lightning Location Network(WWLLN)and the LMI reveal that the spatial distribution,temporal evolution,and radial pattern of lightning activity in Mangkhut observed by the two systems are consistent.Furthermore,due to the detection capability of total lightning,the LMI has advantages in revealing the higher ratio of intra-cloud lightning within the inner core in typhoon.The continuous and real-time observation ofFY-4ALMI provides an unprecedented platform for monitoring total lightning and deep convection in landing typhoons in China,which will promote the generation of new research and applications in the future.展开更多
Developing efficient and robust electrocatalysts toward ethanol oxidation reaction(EOR)with high C1 pathway selectivity is critical for commercialization of direct ethanol fuel cells(DEFCs).Unfortunately,current most ...Developing efficient and robust electrocatalysts toward ethanol oxidation reaction(EOR)with high C1 pathway selectivity is critical for commercialization of direct ethanol fuel cells(DEFCs).Unfortunately,current most EOR electrocatalysts suffer from rapid activity degradation and poor C1 pathway selectivity for complete oxidation of ethanol.Herein,we report a novel electrocatalyst of five-fold twinned(FFT)Ir-alloyed Pt nanorods(NRs)toward EOR.Such FFT Pt-Ir NRs bounded by five(100)facets on the sides and ten(111)facets at two ends possess high percentage of(100)facets with tensile strain.Owing to the inherent characteristics of the FFT NR and Ir alloying,the as-prepared FFT Pt-Ir NRs display excellent alkaline EOR performance with a mass activity(MA)of 4.18 A·mgPt^(-1),a specific activity(SA)of 10.22 mA·cm^(-2),and a Faraday efficiency of 61.21%for the C1 pathway,which are 6.85,5.62,and 7.70 times higher than those of a commercial Pt black,respectively.Besides,our catalyst also exhibits robust durability.The large percentage of open tensile-strained(100)facets and Ir alloying significantly promote the cleavage of C-C bonds and facilitate oxidation of the poisonous intermediates,leading to the transformation of the dominant reaction pathway for EOR from C2 to C1 pathway,and effectively suppress the deactivation of the catalyst.展开更多
基金Supported by the National Key Research and Development Program of China(2017YFC1501502)Open Fund of Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites of National Satellite Meteorological CenterNational Natural Science Foundation of China(41405004 and 41875001)。
文摘Using lightning observations from the Fengyun-4A Lightning Mapping Imager(FY-4A LMI),best-track data from the Shanghai Typhoon Institute,bright temperature(TBB)data from Himawari-8 satellite,and composite reflectivity(CR)data from the South China radar network,we investigate the spatiotemporal distribution of lightning activity and convective evolution during the landfall of Super Typhoon Mangkhut,the strongest landing typhoon in China in2018.Three stages of active total lightning are observed,and differences of lightning characteristics between the inner core and the outer rainbands are present.The onset of inner-core lightning outbreak is about 4 h ahead of the maximum intensity of the storm,providing indicative information on the change of typhoon intensity.Lightning rates in the outer rainbands increase rapidly 12 h before the landfall,and lightning activity is mainly confined in the outer rainbands after the landfall.A good correlation in hourly variation is shown between lightning rates from the LMI and TBBs from the satellite.The averaged TBB within the inner core reaches its minimum(–80℃)when the innercore lightning outbreak occurs,indicating the occurrence and enhancement of deep convection there.Lightning locations observed by the LMI has a good spatial correspondence with regions of low TBBs and high CRs,revealing the monitoring capability of the LMI to lightning activity and deep convection in landing typhoons.Comparisons between the World Wide Lightning Location Network(WWLLN)and the LMI reveal that the spatial distribution,temporal evolution,and radial pattern of lightning activity in Mangkhut observed by the two systems are consistent.Furthermore,due to the detection capability of total lightning,the LMI has advantages in revealing the higher ratio of intra-cloud lightning within the inner core in typhoon.The continuous and real-time observation ofFY-4ALMI provides an unprecedented platform for monitoring total lightning and deep convection in landing typhoons in China,which will promote the generation of new research and applications in the future.
基金This work was supported by the National Natural Science Foundation of China(No.21908036)the China Postdoctoral Science Foundation(No.2019M662143)+1 种基金the Natural Science Foundation of Anhui Province(No.2008085QB74)the Fundamental Research Funds for the Central Universities(No.JZ2021HGTB0116).
文摘Developing efficient and robust electrocatalysts toward ethanol oxidation reaction(EOR)with high C1 pathway selectivity is critical for commercialization of direct ethanol fuel cells(DEFCs).Unfortunately,current most EOR electrocatalysts suffer from rapid activity degradation and poor C1 pathway selectivity for complete oxidation of ethanol.Herein,we report a novel electrocatalyst of five-fold twinned(FFT)Ir-alloyed Pt nanorods(NRs)toward EOR.Such FFT Pt-Ir NRs bounded by five(100)facets on the sides and ten(111)facets at two ends possess high percentage of(100)facets with tensile strain.Owing to the inherent characteristics of the FFT NR and Ir alloying,the as-prepared FFT Pt-Ir NRs display excellent alkaline EOR performance with a mass activity(MA)of 4.18 A·mgPt^(-1),a specific activity(SA)of 10.22 mA·cm^(-2),and a Faraday efficiency of 61.21%for the C1 pathway,which are 6.85,5.62,and 7.70 times higher than those of a commercial Pt black,respectively.Besides,our catalyst also exhibits robust durability.The large percentage of open tensile-strained(100)facets and Ir alloying significantly promote the cleavage of C-C bonds and facilitate oxidation of the poisonous intermediates,leading to the transformation of the dominant reaction pathway for EOR from C2 to C1 pathway,and effectively suppress the deactivation of the catalyst.