Low-carbon hydrogen can play a significant role in decarbonizing the world. Hydrogen is currently mainly produced from fossil sources,requiring additional CO_(2)capture to decarbonize, which energy intense and costly....Low-carbon hydrogen can play a significant role in decarbonizing the world. Hydrogen is currently mainly produced from fossil sources,requiring additional CO_(2)capture to decarbonize, which energy intense and costly. In a recent Green Energy & Environment paper, Cheng and Di et al. proposed a novel integration process referred to as SECLR_(HC) to generate high-purity H_(2) by in-situ separation of H_(2)and CO without using any additional separation unit. Theoretically, the proposed process can essentially achieve the separation of C and H in gaseous fuel via a reconfigured reaction process, and thus attaining high-purity hydrogen of ~99%, as well as good carbon and hydrogen utilization rates and economic feasibility. It displays an optimistic prospect that industrial decarbonization is not necessarily expensive, as long as a suitable CCS measure can be integrated into the industrial manufacturing process.展开更多
Ammonia (NH<sub>3</sub>) dissociation and oxidation in a cylindrical quartz reactor has been experimentally studied for various inlet NH<sub>3</sub> concentrations (5%, 10%, and 15%) and reacto...Ammonia (NH<sub>3</sub>) dissociation and oxidation in a cylindrical quartz reactor has been experimentally studied for various inlet NH<sub>3</sub> concentrations (5%, 10%, and 15%) and reactor temperatures between 700 K and 1000 K. The thermal effects during both NH<sub>3</sub> dissociation (endothermic) and oxidation (exothermic) were observed using a bundle of thermocouples positioned along the central axis of the quartz reactor, while the corresponding NH<sub>3</sub> conversions and nitrogen oxides emissions were determined by analysing the gas composition of the reactor exit stream. A stronger endothermic effect, as indicated by a greater temperature drop during NH<sub>3</sub> dissociation, was observed as the NH<sub>3</sub> feed concentration and reactor temperature increased. During NH<sub>3</sub> oxidation, a predominantly greater exothermic effect with increasing NH<sub>3</sub> feed concentration and reactor temperature was also evident;however, it was apparent that NH<sub>3</sub> dissociation occurred near the reactor inlet, preceding the downstream NH<sub>3</sub> and H<sub>2</sub> oxidation. For both NH<sub>3</sub> dissociation and oxidation, NH<sub>3</sub> conversion increased with increasing temperature and decreasing initial NH<sub>3</sub> concentration. Significant levels of NO<sub>X</sub> emissions were observed during NH<sub>3</sub> oxidation, which increased with increasing temperature. From the experimental results, it is speculated that the stainless-steel in the thermocouple bundle may have catalysed NH<sub>3</sub> dissociation and thus changed the reaction chemistry during NH<sub>3</sub> oxidation.展开更多
Narrow spectral response,low charge separation efficiency and slow water oxidation kinetics of TiO_(2)limit its application in photoelectrochemical and photocatalytic water splitting.Herein,a promising organic/inorgan...Narrow spectral response,low charge separation efficiency and slow water oxidation kinetics of TiO_(2)limit its application in photoelectrochemical and photocatalytic water splitting.Herein,a promising organic/inorganic composite catalyst Ag/PANI/3DOMM‐TiO_(2–x)with a three‐dimensional ordered macro‐and meso‐porous(3DO MM)structure,oxygen vacancy and Ti^(3+)defects,heterojunction formation and noble metal Ag was designed based on the Z‐scheme mechanism and successfully prepared.The Ag/PANI/3DOMM‐TiO_(2–x)ternary catalyst exhibited enhanced hydrogen production activity in both photocatalytic and photoelectrochemical water splitting.The photocatalytic hydrogen production rate is 420.90μmol g^(–1)h^(–1),which are 19.80 times and 2.06 times higher than the commercial P25 and 3DOMM‐TiO_(2),respectively.In the photoelectrochemical tests,the Ag/PANI/3DOMM‐TiO_(2–x)photoelectrode shows enhanced separation and transfer of carriers with a high current density of 1.55 mA cm^(–2)at equilibrium potential of 1.23 V under simulated AM 1.5 G illumination,which is approximately 5 times greater than the 3DOMM‐TiO_(2).The present work has demonstrated the promising potential of organic/inorganic Z‐scheme photocatalyst in driving water splitting for hydrogen production.展开更多
A series of mesoporous alumina (MA) supported cobalt (Co/MA) catalysts with MA isomorphically substituted by zirconium (Zr) were synthesised and evaluated for their performance in the Fischer</span><span styl...A series of mesoporous alumina (MA) supported cobalt (Co/MA) catalysts with MA isomorphically substituted by zirconium (Zr) were synthesised and evaluated for their performance in the Fischer</span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">Tropsch synthesis. The Zr/(Zr + Al) atomic ratios varied from 1% - 15%. A zirconium-impregnated Co/MA catalyst prepared by wet impregnation with a Zr/(Zr + Al) atomic ratio of 5% was also evaluated to examine Zr incorporation’s effect method. The catalysts synthesised were characterised using N</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> adsorption-desorption, X-ray Powder Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-Ray Photoelectron Spectroscopy (XPS). It was found that Zr</span><sup><span style="font-family:Verdana;">4+</span></sup><span style="font-family:Verdana;"> ions were incorporated into the framework of MA and kept intact up to a Zr/(Zr + Al) atomic ratio of 5%. The cobalt dispersion and reducibility were improved as the Zr/(Zr + Al) atomic ratio increased to 50%. The performance of these catalysts for Fischer</span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">Tropsch synthesis was evaluated using a fixed bed reactor at temperature and pressure of 493 K and 20 bar, respectively. The feed syngas </span><span><span style="font-family:Verdana;">had an H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/CO ratio of 2, diluted with 10% Ar. For isomorphically</span></span><span style="font-family:Verdana;"> Zr-substituted Co/MA, the CO conversion and selectivity of diesel (C</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> - C</span><sub><span style="font-family:Verdana;">20</span></sub><span style="font-family:Verdana;">) increased first and then decreased with increasing the Zr/(Zr + Al) atomic ratio. The maximum 38.9% CO conversion and 34.6% diesel (C</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> - C</span><sub><span style="font-family:Verdana;">20</span></sub><span style="font-family:Verdana;">) selectivity were obtained at Zr/(Zr + Al) atomic ratio of 5%. The isomorphic substitution method was better than the wet impregnation method in CO conversion and diesel selectivity.展开更多
Using minimal photothermal material to achieve maximum evaporation rate is extremely important for practical applications of interfacial solar evaporation technology.In this work,we found that with the increase in the...Using minimal photothermal material to achieve maximum evaporation rate is extremely important for practical applications of interfacial solar evaporation technology.In this work,we found that with the increase in the size of evaporation surfaces,the evaporation rate decreased.Both experimental and numerical simulation results confirmed that when the evaporation surface size increased,the middle portion of the evaporation surface acted as a‘‘dead evaporation zone”with little contribution to water evaporation.Based on this,the middle portion of the evaporation surface was selectively removed,and counterintuitively,both the evaporation rate and vapor output were increased due to the reconfigured and enhanced convection above the entire evaporation surface.As such,this work developed an important strategy to achieve a higher evaporation rate and increased vapour output while using less material.展开更多
The effect of oil shale semi-coke(SC)on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed(CFB)which burns Zhundong lignite(ZD)was investigated.10 wt%...The effect of oil shale semi-coke(SC)on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed(CFB)which burns Zhundong lignite(ZD)was investigated.10 wt%or 20 wt%SC was added to ZD,which were then combusted in the CFB furnace at 950℃.Two probes with vertical and horizontal orientations were installed in the flue duct to simulate ash deposition.Both windward and leeward ash deposits on probes(P_(1)W,P_(1)L,P_(2)W and P_(2)L)were analyzed by using a scanning electron microscopy with energy dispersive X-ray(SEM-EDX),X-ray diffraction(XRD),an inductively coupled plasma optical emission spectrometry ICP-OES,and a particle size analyzer.When ZD was burned alone,the P1W deposit was comprised of agglomerates(<30µm)enriched in CaSO_(4)and Na_(2)SiO_(3),incurring significant sintering.The P1L and P2W deposits,however,were of both discrete and agglomerated particles in similar mineral phases but with coarser sizes.The P_(2)L deposit was mainly fine ash particles where Na_(2)SiO_(3)and Na_(2)SO_(4)were absent.As SC was added,the agglomerates in both P1W and P1L decreased.Moreover,SiO_(2)and Ca/Na aluminosilicates dominated the mineral phases whereas Na_(2)SiO_(3)and Na_(2)SO_(4)disappeared,showing a decrease in deposit stickiness.Likewise,the P2W deposit was found less spread on the probe,decreasing its deposition propensity.Na-bearing minerals turned into(Na,K)(Si_(3)Al)O_(8)and(Ca,Na)(Si,Al)4O8 in the P_(2)W deposit.Moreover,Na in the deposits decreased from 32 mg/g to less than 15 mg/g as SC presented.The addition of SC would therefore help alleviate the propensity of ash deposition in the flue path in the CFB combustion of ZD.展开更多
The intramolecular cyclization of 2-alkynylanilines mediated by DMSO/SOCI_(2) was found to afford biologically interesting 3-methylthioindoles,which are rarely obtained by the exiting methods.DMSO could also be replac...The intramolecular cyclization of 2-alkynylanilines mediated by DMSO/SOCI_(2) was found to afford biologically interesting 3-methylthioindoles,which are rarely obtained by the exiting methods.DMSO could also be replaced with its deuterated counterpart,enabling the method applicable to the construction of indole skeleton bearing a SCD_(3) moiety at its 3-position.展开更多
文摘Low-carbon hydrogen can play a significant role in decarbonizing the world. Hydrogen is currently mainly produced from fossil sources,requiring additional CO_(2)capture to decarbonize, which energy intense and costly. In a recent Green Energy & Environment paper, Cheng and Di et al. proposed a novel integration process referred to as SECLR_(HC) to generate high-purity H_(2) by in-situ separation of H_(2)and CO without using any additional separation unit. Theoretically, the proposed process can essentially achieve the separation of C and H in gaseous fuel via a reconfigured reaction process, and thus attaining high-purity hydrogen of ~99%, as well as good carbon and hydrogen utilization rates and economic feasibility. It displays an optimistic prospect that industrial decarbonization is not necessarily expensive, as long as a suitable CCS measure can be integrated into the industrial manufacturing process.
文摘Ammonia (NH<sub>3</sub>) dissociation and oxidation in a cylindrical quartz reactor has been experimentally studied for various inlet NH<sub>3</sub> concentrations (5%, 10%, and 15%) and reactor temperatures between 700 K and 1000 K. The thermal effects during both NH<sub>3</sub> dissociation (endothermic) and oxidation (exothermic) were observed using a bundle of thermocouples positioned along the central axis of the quartz reactor, while the corresponding NH<sub>3</sub> conversions and nitrogen oxides emissions were determined by analysing the gas composition of the reactor exit stream. A stronger endothermic effect, as indicated by a greater temperature drop during NH<sub>3</sub> dissociation, was observed as the NH<sub>3</sub> feed concentration and reactor temperature increased. During NH<sub>3</sub> oxidation, a predominantly greater exothermic effect with increasing NH<sub>3</sub> feed concentration and reactor temperature was also evident;however, it was apparent that NH<sub>3</sub> dissociation occurred near the reactor inlet, preceding the downstream NH<sub>3</sub> and H<sub>2</sub> oxidation. For both NH<sub>3</sub> dissociation and oxidation, NH<sub>3</sub> conversion increased with increasing temperature and decreasing initial NH<sub>3</sub> concentration. Significant levels of NO<sub>X</sub> emissions were observed during NH<sub>3</sub> oxidation, which increased with increasing temperature. From the experimental results, it is speculated that the stainless-steel in the thermocouple bundle may have catalysed NH<sub>3</sub> dissociation and thus changed the reaction chemistry during NH<sub>3</sub> oxidation.
文摘Narrow spectral response,low charge separation efficiency and slow water oxidation kinetics of TiO_(2)limit its application in photoelectrochemical and photocatalytic water splitting.Herein,a promising organic/inorganic composite catalyst Ag/PANI/3DOMM‐TiO_(2–x)with a three‐dimensional ordered macro‐and meso‐porous(3DO MM)structure,oxygen vacancy and Ti^(3+)defects,heterojunction formation and noble metal Ag was designed based on the Z‐scheme mechanism and successfully prepared.The Ag/PANI/3DOMM‐TiO_(2–x)ternary catalyst exhibited enhanced hydrogen production activity in both photocatalytic and photoelectrochemical water splitting.The photocatalytic hydrogen production rate is 420.90μmol g^(–1)h^(–1),which are 19.80 times and 2.06 times higher than the commercial P25 and 3DOMM‐TiO_(2),respectively.In the photoelectrochemical tests,the Ag/PANI/3DOMM‐TiO_(2–x)photoelectrode shows enhanced separation and transfer of carriers with a high current density of 1.55 mA cm^(–2)at equilibrium potential of 1.23 V under simulated AM 1.5 G illumination,which is approximately 5 times greater than the 3DOMM‐TiO_(2).The present work has demonstrated the promising potential of organic/inorganic Z‐scheme photocatalyst in driving water splitting for hydrogen production.
文摘A series of mesoporous alumina (MA) supported cobalt (Co/MA) catalysts with MA isomorphically substituted by zirconium (Zr) were synthesised and evaluated for their performance in the Fischer</span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">Tropsch synthesis. The Zr/(Zr + Al) atomic ratios varied from 1% - 15%. A zirconium-impregnated Co/MA catalyst prepared by wet impregnation with a Zr/(Zr + Al) atomic ratio of 5% was also evaluated to examine Zr incorporation’s effect method. The catalysts synthesised were characterised using N</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> adsorption-desorption, X-ray Powder Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-Ray Photoelectron Spectroscopy (XPS). It was found that Zr</span><sup><span style="font-family:Verdana;">4+</span></sup><span style="font-family:Verdana;"> ions were incorporated into the framework of MA and kept intact up to a Zr/(Zr + Al) atomic ratio of 5%. The cobalt dispersion and reducibility were improved as the Zr/(Zr + Al) atomic ratio increased to 50%. The performance of these catalysts for Fischer</span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">Tropsch synthesis was evaluated using a fixed bed reactor at temperature and pressure of 493 K and 20 bar, respectively. The feed syngas </span><span><span style="font-family:Verdana;">had an H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/CO ratio of 2, diluted with 10% Ar. For isomorphically</span></span><span style="font-family:Verdana;"> Zr-substituted Co/MA, the CO conversion and selectivity of diesel (C</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> - C</span><sub><span style="font-family:Verdana;">20</span></sub><span style="font-family:Verdana;">) increased first and then decreased with increasing the Zr/(Zr + Al) atomic ratio. The maximum 38.9% CO conversion and 34.6% diesel (C</span><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;"> - C</span><sub><span style="font-family:Verdana;">20</span></sub><span style="font-family:Verdana;">) selectivity were obtained at Zr/(Zr + Al) atomic ratio of 5%. The isomorphic substitution method was better than the wet impregnation method in CO conversion and diesel selectivity.
基金financial support from the Australian Research Council(FT190100485 and DP220100583)financial support from the China Scholarship Council for primary scholarshipsthe Future Industries Institute for top up scholarships。
文摘Using minimal photothermal material to achieve maximum evaporation rate is extremely important for practical applications of interfacial solar evaporation technology.In this work,we found that with the increase in the size of evaporation surfaces,the evaporation rate decreased.Both experimental and numerical simulation results confirmed that when the evaporation surface size increased,the middle portion of the evaporation surface acted as a‘‘dead evaporation zone”with little contribution to water evaporation.Based on this,the middle portion of the evaporation surface was selectively removed,and counterintuitively,both the evaporation rate and vapor output were increased due to the reconfigured and enhanced convection above the entire evaporation surface.As such,this work developed an important strategy to achieve a higher evaporation rate and increased vapour output while using less material.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51706028)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2017-K01)+1 种基金the Joint Grants Scheme of Shanxi Province and National Science Foundation of China(Key Applied Projects U1610254)the Australia Research Council under the ARC Linkage Projects Scheme(Project No.LP100200135).
文摘The effect of oil shale semi-coke(SC)on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed(CFB)which burns Zhundong lignite(ZD)was investigated.10 wt%or 20 wt%SC was added to ZD,which were then combusted in the CFB furnace at 950℃.Two probes with vertical and horizontal orientations were installed in the flue duct to simulate ash deposition.Both windward and leeward ash deposits on probes(P_(1)W,P_(1)L,P_(2)W and P_(2)L)were analyzed by using a scanning electron microscopy with energy dispersive X-ray(SEM-EDX),X-ray diffraction(XRD),an inductively coupled plasma optical emission spectrometry ICP-OES,and a particle size analyzer.When ZD was burned alone,the P1W deposit was comprised of agglomerates(<30µm)enriched in CaSO_(4)and Na_(2)SiO_(3),incurring significant sintering.The P1L and P2W deposits,however,were of both discrete and agglomerated particles in similar mineral phases but with coarser sizes.The P_(2)L deposit was mainly fine ash particles where Na_(2)SiO_(3)and Na_(2)SO_(4)were absent.As SC was added,the agglomerates in both P1W and P1L decreased.Moreover,SiO_(2)and Ca/Na aluminosilicates dominated the mineral phases whereas Na_(2)SiO_(3)and Na_(2)SO_(4)disappeared,showing a decrease in deposit stickiness.Likewise,the P2W deposit was found less spread on the probe,decreasing its deposition propensity.Na-bearing minerals turned into(Na,K)(Si_(3)Al)O_(8)and(Ca,Na)(Si,Al)4O8 in the P_(2)W deposit.Moreover,Na in the deposits decreased from 32 mg/g to less than 15 mg/g as SC presented.The addition of SC would therefore help alleviate the propensity of ash deposition in the flue path in the CFB combustion of ZD.
基金the National Natural Science Foundation of China(No.22071175)K.Zhao acknowledges the National Key R&D Program of China(No.2019YFA0905104)for financial supports.
文摘The intramolecular cyclization of 2-alkynylanilines mediated by DMSO/SOCI_(2) was found to afford biologically interesting 3-methylthioindoles,which are rarely obtained by the exiting methods.DMSO could also be replaced with its deuterated counterpart,enabling the method applicable to the construction of indole skeleton bearing a SCD_(3) moiety at its 3-position.