Utilization of biomass-derived materials or chemicals plays a significant role in reducing the dependence of unsustainable resources of petroleum and coal. A series of sulfonated glucose-derived solid acids(SGSAs) wer...Utilization of biomass-derived materials or chemicals plays a significant role in reducing the dependence of unsustainable resources of petroleum and coal. A series of sulfonated glucose-derived solid acids(SGSAs) were developed in this study through a one-step method. These catalysts were characterized by XRD, FT-IR, SEM,and BET to determine their physiochemical properties, and their acid content was measured by acid–base titration. The catalytic performances of SGSA catalysts were evaluated in two esterification reactions: propionic acid or oleic acid with methanol(a typical reaction to upgrade biodiesel). Conversion of oleic acid and selectivity of methyl oleate can reach as high as 93.3% and 94.7% respectively over SGSA-6, which has the highest -SO3 H density. Moreover, regeneration of spent catalysts by sulfuric acid solution can significantly enhance their stability and reusability.展开更多
基金Supported by the Natural Science Key Project of the Jiangsu Higher Education Institutions(15KJA220001)Jiangsu Province Six Talent Peaks Project(2016-XCL-043)+1 种基金the Young Natural Science Foundation of Jiangsu Province(BK20170918)the National Natural Science Foundation of China(NNSFC 21706134)
文摘Utilization of biomass-derived materials or chemicals plays a significant role in reducing the dependence of unsustainable resources of petroleum and coal. A series of sulfonated glucose-derived solid acids(SGSAs) were developed in this study through a one-step method. These catalysts were characterized by XRD, FT-IR, SEM,and BET to determine their physiochemical properties, and their acid content was measured by acid–base titration. The catalytic performances of SGSA catalysts were evaluated in two esterification reactions: propionic acid or oleic acid with methanol(a typical reaction to upgrade biodiesel). Conversion of oleic acid and selectivity of methyl oleate can reach as high as 93.3% and 94.7% respectively over SGSA-6, which has the highest -SO3 H density. Moreover, regeneration of spent catalysts by sulfuric acid solution can significantly enhance their stability and reusability.