Photocatalytic aerobic oxidation desulfurization(PAODS)is a promising and sustainable alternative to conventional,energyintensive desulfurization techniques for petroleum products.However,its development is greatly pl...Photocatalytic aerobic oxidation desulfurization(PAODS)is a promising and sustainable alternative to conventional,energyintensive desulfurization techniques for petroleum products.However,its development is greatly plagued by the low capability in generating highly reactive oxygen species and sluggish kinetics of sulfide oxidation of reported photocatalysts.Here we report a class of MoO_(x)nanocluster decorated on ultrathin Mo-doped TiO_(2)nanosheet(MoO_(x)/MoTiO)catalyst for efficiently facilitating the photocatalytic aerobic oxidation of sulfides.We demonstrate that MoO_(x)/MoTiO can not only promote the generation of highly reactive singlet oxygen(^(1)O_(2))but also enhance the aerobic conversion of sulfides,which leads to a record dibenzothiophene oxidation activity of 3.90 mmol g^(-1)h^(-1).The multiple experimental characterizations and density functional theory calculations collectively reveal that the doped-Mo sites can interact with the photogenerated excitons,enabling directly energy transfer generation of^(1)O_(2)through a new exciton modulation mechanism,and the coordination unsaturated MoO_(x)clusters play the role of co-catalyst to enhance the separation of charge carriers,and effectively catalyze the reaction between sulfides and1O_(2)to form sulfones.展开更多
基金supported by the National Natural Science Foundation of China(21808098,52261135633,52025133)the National Key R&D Program of China(2022YFE0128500)+1 种基金the Project of Shandong Province Higher Educational Science(2022KJ122)Yantai Science and Technology Development Program(2019XDHZ106)。
文摘Photocatalytic aerobic oxidation desulfurization(PAODS)is a promising and sustainable alternative to conventional,energyintensive desulfurization techniques for petroleum products.However,its development is greatly plagued by the low capability in generating highly reactive oxygen species and sluggish kinetics of sulfide oxidation of reported photocatalysts.Here we report a class of MoO_(x)nanocluster decorated on ultrathin Mo-doped TiO_(2)nanosheet(MoO_(x)/MoTiO)catalyst for efficiently facilitating the photocatalytic aerobic oxidation of sulfides.We demonstrate that MoO_(x)/MoTiO can not only promote the generation of highly reactive singlet oxygen(^(1)O_(2))but also enhance the aerobic conversion of sulfides,which leads to a record dibenzothiophene oxidation activity of 3.90 mmol g^(-1)h^(-1).The multiple experimental characterizations and density functional theory calculations collectively reveal that the doped-Mo sites can interact with the photogenerated excitons,enabling directly energy transfer generation of^(1)O_(2)through a new exciton modulation mechanism,and the coordination unsaturated MoO_(x)clusters play the role of co-catalyst to enhance the separation of charge carriers,and effectively catalyze the reaction between sulfides and1O_(2)to form sulfones.