Cd_(0.5)Zn_(0.5)S/g-C_(3)N_(4)(CZS/CN)step-like heterojunction composites were facilely synthesized by annealing a sandwich of cadmium-zinc-thiourea precursors in one pot.The types of the used raw materials and the pr...Cd_(0.5)Zn_(0.5)S/g-C_(3)N_(4)(CZS/CN)step-like heterojunction composites were facilely synthesized by annealing a sandwich of cadmium-zinc-thiourea precursors in one pot.The types of the used raw materials and the preparation procedure were simplified as much as possible in this work.The obtained hybrid exhibited enlarged specific surface area and higher separation/transfer efficiency of charge carriers compared to pure Cd_(0.5)Zn_(0.5)S and g–C_(3)N_(4),thus exhibited much enhanced photocatalytic efficiency for dye degradation under visible-light irradiation.The interfacial charge-transfer mechanism of the formed step-scheme(Sscheme)heterojunction between Cd_(0.5)Zn_(0.5)S and g–C_(3)N_(4) were carefully investigated and discussed.This work could widen the application prospect of the Cd_(x)Zn_(1-x)S/g-C_(3)N_(4) composite and provide new ideas to the design and fabrication of novel heterojunctions with robust photocatalytic performance.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21972171 and 51672312)the Fundamental Research Funds for the Central Universities,South Central University for Nationalities(No.CZT20016)。
文摘Cd_(0.5)Zn_(0.5)S/g-C_(3)N_(4)(CZS/CN)step-like heterojunction composites were facilely synthesized by annealing a sandwich of cadmium-zinc-thiourea precursors in one pot.The types of the used raw materials and the preparation procedure were simplified as much as possible in this work.The obtained hybrid exhibited enlarged specific surface area and higher separation/transfer efficiency of charge carriers compared to pure Cd_(0.5)Zn_(0.5)S and g–C_(3)N_(4),thus exhibited much enhanced photocatalytic efficiency for dye degradation under visible-light irradiation.The interfacial charge-transfer mechanism of the formed step-scheme(Sscheme)heterojunction between Cd_(0.5)Zn_(0.5)S and g–C_(3)N_(4) were carefully investigated and discussed.This work could widen the application prospect of the Cd_(x)Zn_(1-x)S/g-C_(3)N_(4) composite and provide new ideas to the design and fabrication of novel heterojunctions with robust photocatalytic performance.