期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
青藏高原植被调查与制图评估 被引量:1
1
作者 桑佳文 宋创业 +8 位作者 贾宁霞 贾元 刘长成 乔鲜果 张琳 袁伟影 吴冬秀 李凌浩 郭柯 《生物多样性》 CAS CSCD 北大核心 2023年第3期52-67,共16页
青藏高原植被调查与制图一直是青藏高原植被生态学研究的重要内容。历史上,我国多次开展青藏高原植被考察活动,在植被制图方面取得了一系列重要成果。本研究首先基于文献研读对青藏高原植被考察及其成果进行回顾,并对制图范围包括青藏... 青藏高原植被调查与制图一直是青藏高原植被生态学研究的重要内容。历史上,我国多次开展青藏高原植被考察活动,在植被制图方面取得了一系列重要成果。本研究首先基于文献研读对青藏高原植被考察及其成果进行回顾,并对制图范围包括青藏高原的、使用比较广泛的植被图进行对比和分析;然后,基于第二次青藏高原综合科学考察获取的植被调查样点数据,与多幅植被图在数据一致性方面进行了对比。结果表明:(1)青藏高原植被调查的历史久远,但系统、科学的青藏高原植被调查开始于1949年新中国成立之后,期间获取了大量植被调查数据,出版了大量的专著和图志,《中华人民共和国植被图(1:4,000,000)》《中国草地资源图集(1:1,000,000)》和《中华人民共和国植被图(1:1,000,000)》是包含整个青藏高原、应用最为广泛的3幅植被图,《青藏高原现状植被图》是基于现阶段植被调查数据制作的青藏高原植被图。但是这4幅图在植被分类体系上存在较大差异,严重影响了图件之间的可比性。(2)对比发现,4幅植被图之间均存在一定程度的不一致性。面积较大的植被型组,如森林和草本植被,在植被图之间的一致性较高;但面积相对较小的植被型组,如沼泽与水生植被和农业植被,在植被图之间的一致性较低。进一步以高山嵩草(Carexparvula)草甸、紫花针茅(Stipapurpurea)草原、青藏薹草(Carex moorcroftii)草原、沙生针茅(Stipa glareosa)草原、矮生嵩草(Carex alatauensis)草甸、藏沙蒿(Artemisia wellbyi)草原、昆仑针茅(Stipa roborowskyi)草原、固沙草(Orinus thoroldii)草原等8种青藏高原的典型植被类型为研究对象,发现它们的面积和空间分布格局在《中华人民共和国植被图(1:1,000,000)》和《中国草地资源图集(1:1,000,000)》之间也存在较大的差异。(3)植被调查样点数据与《中华人民共和国植被图(1:1,000,000)》《中国草地资源图集(1:1,000,000)》《青藏高原现状植被图》的对比发现,在植被型组水平上分别有45.05%、21.02%、50.83%的植被调查样点的植被类型与植被图不吻合。(4)近30年来,由于气候变化及人类活动的影响,青藏高原植被的分布格局已经发生了较大变化。同时,植被调查与制图技术进步巨大,高空间、时间及光谱分辨率遥感影像与深度学习技术在植被制图中的应用更加深入,绘制新一代青藏高原大、中比例尺的植被图的时机已经成熟。新一代大、中比例尺植被图的编制将给青藏高原的生态系统管理、生态屏障区和重大生态修复工程建设提供更为翔实的基础数据资料。 展开更多
关键词 植被图 植被类型 植被变化 气候变化 调查
原文传递
Internet of Things to network smart devices for ecosystem monitoring 被引量:11
2
作者 Xin Li Ning Zhao +14 位作者 Rui Jin Shaomin Liu Xiaomin Sun Xuefa Wen dongxiu wu Yan Zhou Jianwen Guo Shiping Chen Ziwei Xu Mingguo Ma Tianming Wang Yonghua Qu Xinwei Wang Fangming wu Yuke Zhou 《Science Bulletin》 SCIE EI CSCD 2019年第17期1234-1245,共12页
Smart, real-time, low-cost, and distributed ecosystem monitoring is essential for understanding and managing rapidly changing ecosystems. However, new techniques in the big data era have rarely been introduced into op... Smart, real-time, low-cost, and distributed ecosystem monitoring is essential for understanding and managing rapidly changing ecosystems. However, new techniques in the big data era have rarely been introduced into operational ecosystem monitoring, particularly for fragile ecosystems in remote areas.We introduce the Internet of Things(IoT) techniques to establish a prototype ecosystem monitoring system by developing innovative smart devices and using IoT technologies for ecosystem monitoring in isolated environments. The developed smart devices include four categories: large-scale and nonintrusive instruments to measure evapotranspiration and soil moisture, in situ observing systems for CO2 and d13 C associated with soil respiration, portable and distributed devices for monitoring vegetation variables, and Bi-CMOS cameras and pressure trigger sensors for terrestrial vertebrate monitoring. These new devices outperform conventional devices and are connected to each other via wireless communication networks. The breakthroughs in the ecosystem monitoring IoT include new data loggers and longdistance wireless sensor network technology that supports the rapid transmission of data from devices to wireless networks. The applicability of this ecosystem monitoring IoT is verified in three fragile ecosystems, including a karst rocky desertification area, the National Park for Amur Tigers, and the oasis-desert ecotone in China. By integrating these devices and technologies with an ecosystem monitoring information system, a seamless data acquisition, transmission, processing, and application IoT is created. The establishment of this ecosystem monitoring IoT will serve as a new paradigm for ecosystem monitoring and therefore provide a platform for ecosystem management and decision making in the era of big data. 展开更多
关键词 ECOSYSTEM monitoring Fragile ECOSYSTEM Internet of THINGS WIRELESS sensor NETWORK Smart device
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部