期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Defect and interface engineering for electrochemical nitrogen reduction reaction under ambient conditions 被引量:5
1
作者 dongxue guo Shuo Wang +2 位作者 Jun Xu Wenjun Zheng Danhong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期448-468,共21页
Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3... Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3))synthesis.However,the e-NRR performance is currently impeded by the inherent inertness of N_(2) molecules,the extremely slow kinetics and the overwhelming competition from the hydrogen evolution reaction(HER),all of which cause unsatisfied yield and ammonia selectivity(Faradaic efficiency,FE).Defect and interface engineering are capable of achieving novel physical and chemical properties as well as superior synergistic effects for various electrocatalysts.In this review,we first provide a general introduction to the NRR mechanism.We then focus on the recent progress in defect and interface engineering and summarize how defect and interface can be rationally designed and functioned in NRR catalysts.Particularly,the origin of superior NRR catalytic activity by applying these approaches was discussed from both theoretical and experimental perspectives.Finally,the remaining challenges and future perspectives in this emerging area are highlighted.It is expected that this review will shed some light on designing NRR electrocatalysts with excellent activity,selectivity and stability. 展开更多
关键词 Nitrogen reduction ELECTROCATALYSIS Defect engineering Interface engineering Ambient conditions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部