Buoy-based observations of wave spectra during the passage of three typhoons in the northern South China Sea are examined.Though most spectra of mature typhoon-generated waves are unimodal,double-peaked spectra accoun...Buoy-based observations of wave spectra during the passage of three typhoons in the northern South China Sea are examined.Though most spectra of mature typhoon-generated waves are unimodal,double-peaked spectra account for a significant proportion during the growing and decaying stages.This is due either to the superposition of swells on local wind waves or to the mechanism of nonlinear interaction between different wave components.The growth rate of energy density is an effective way to predict spectrum variation.The dominant wave direction depends on the location of the typhoon center to the site,but the direction spread shows no regularity in distant regions.In this study,a new six-parameter spectral formula is proposed to represent doublepeaked spectra and is shown to provide a better fit than previous models.The theoretical relationship between shape parameter and spectral width is still applicable to each peak.The characteristics of the variations of spectral parameters are analyzed.It is demonstrated that the spectral parameters are not only related to the typhoon intensity and typhoon track,but also have strong intercorrelations.Moreover,the growth relation between significant wave height and significant wave period is obtained to fit the typhoon-generated waves.展开更多
We examined the influences of the wind fi eld and wave-current interaction(WCI)on the numerical simulation results of typhoon-induced wind waves in the northern East China Sea(NECS)using the coupled Simulating Waves N...We examined the influences of the wind fi eld and wave-current interaction(WCI)on the numerical simulation results of typhoon-induced wind waves in the northern East China Sea(NECS)using the coupled Simulating Waves Nearshore+Advanced Circulation(SWAN+ADCIRC)model.The simulations were performed during two typhoon events(Lekima and Muifa),and two widely used reanalysis wind fields,the Climate Forecast System Version 2(CFSv2)from the National Centers for Environmental Prediction(NCEP)and the fifth-generation European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis(ERA5),were compared.The results indicate that the ERA5 and CFSv2 wind fields both reliably reproduced the wind variations measured by in-situ buoys,and the accuracy of the winds from ERA5 were generally better than those from CFSv2 because CFSv2 tended to overestimate the wind speed and the simulated significant wave height(SWH),particularly the peak SWH.The WCI effects between the two wind field simulations were similar;these effects enhanced the SWH throughout the nearshore NECS during both typhoons but suppressed the SWH on the right side of the Typhoon Muifa track in the deep and off shore sea areas.In summary,variations in the water depth and current propagation direction dominate the modulation of wave height.展开更多
基金The National Natural Science Foundation of China under contract No.U1706216the National Key Research and Development Program of China under contract Nos 2016YFC1402000 and 2018YFC1407003+1 种基金the National Natural Science Foundation of China under contract Nos 41406017,U1406402 and 41421005the CAS Strategic Priority Project under contract Nos XDA19060202and XDA19060502
文摘Buoy-based observations of wave spectra during the passage of three typhoons in the northern South China Sea are examined.Though most spectra of mature typhoon-generated waves are unimodal,double-peaked spectra account for a significant proportion during the growing and decaying stages.This is due either to the superposition of swells on local wind waves or to the mechanism of nonlinear interaction between different wave components.The growth rate of energy density is an effective way to predict spectrum variation.The dominant wave direction depends on the location of the typhoon center to the site,but the direction spread shows no regularity in distant regions.In this study,a new six-parameter spectral formula is proposed to represent doublepeaked spectra and is shown to provide a better fit than previous models.The theoretical relationship between shape parameter and spectral width is still applicable to each peak.The characteristics of the variations of spectral parameters are analyzed.It is demonstrated that the spectral parameters are not only related to the typhoon intensity and typhoon track,but also have strong intercorrelations.Moreover,the growth relation between significant wave height and significant wave period is obtained to fit the typhoon-generated waves.
基金Supported by the National Natural Science Foundation of China(Nos.U1706216,41976010,42006027,U1806227)the Natural Science Foundation of Shandong Province,China(No.ZR2016DQ16)+2 种基金the Key Deployment Project of Center for Ocean Mega-Science,Chinese Academy of Sciences(Nos.COMS2019J02,COMS2019J05)the Chinese Academy of Sciences Strategic Priority Project(Nos.XDA19060202,XDA19060502)the National Key Research and Development Program of China(No.2016YFC1402000)。
文摘We examined the influences of the wind fi eld and wave-current interaction(WCI)on the numerical simulation results of typhoon-induced wind waves in the northern East China Sea(NECS)using the coupled Simulating Waves Nearshore+Advanced Circulation(SWAN+ADCIRC)model.The simulations were performed during two typhoon events(Lekima and Muifa),and two widely used reanalysis wind fields,the Climate Forecast System Version 2(CFSv2)from the National Centers for Environmental Prediction(NCEP)and the fifth-generation European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis(ERA5),were compared.The results indicate that the ERA5 and CFSv2 wind fields both reliably reproduced the wind variations measured by in-situ buoys,and the accuracy of the winds from ERA5 were generally better than those from CFSv2 because CFSv2 tended to overestimate the wind speed and the simulated significant wave height(SWH),particularly the peak SWH.The WCI effects between the two wind field simulations were similar;these effects enhanced the SWH throughout the nearshore NECS during both typhoons but suppressed the SWH on the right side of the Typhoon Muifa track in the deep and off shore sea areas.In summary,variations in the water depth and current propagation direction dominate the modulation of wave height.