期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MOFs derived ZnSe/N-doped carbon nanosheets as multifunctional interlayers for ultralong-Life lithium-sulfur batteries 被引量:2
1
作者 Biao Wang dongyue sun +4 位作者 Yilun Ren Xiaoya Zhou Yujie Ma Shaochun Tang Xiangkang Meng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第30期97-104,共8页
The shuttle effect and slow conversion rate of lithium polysulfides(LiPSs)have become the main obstructs to the development of lithium-sulfur(Li-S)batteries.Herein,the low cost metal-organic frameworks derived nitroge... The shuttle effect and slow conversion rate of lithium polysulfides(LiPSs)have become the main obstructs to the development of lithium-sulfur(Li-S)batteries.Herein,the low cost metal-organic frameworks derived nitrogen-doped carbon nanosheets embedded with zinc selenide nanoparticles(ZnSe/NC nanosheets)were designed and synthesized for Li-S batteries.As the LiPSs trapping-layer,these nanocomposites provide some key benefits:(1)The nitrogen doping changes local electron distribution in the carbon nanosheets,thus the electrical conductivity is greatly improved for facilitating the transport of electrons/ions.(2)Nitrogen atoms and ZnSe nanoparticles play an important role in anchoring the LiPSs via chemical interactions.(3)The remarkable catalytic activity of ZnSe nanoparticles can accelerate the redox kinetics of LiPSs.As a result,the Li-S battery with the ZnSe/NC nanosheets modified separator exhibits ultralong lifespan over 1500 cycles with a small capacity loss of only 0.046%per cycle at 1 C,which is superior over those reported values.Furthermore,the Li-S battery with a high sulfur loading of 4.71 mg cm^(-2) can still maintain a high areal capacity of 4.28 mAh cm^(-2) after 50 cycles.This work provides a new route to the design of multifunctional low cost and high-performance separators for remarkably stable Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Metal-organic frameworks Zinc selenide Multifunctional separator Adsorption and catalysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部