The development of hybrid optics/microwave communication systems puts forward a new requirement for beam splitters to efficiently transmit microwave signals and simultaneously reflect optical signals. Owing to mechani...The development of hybrid optics/microwave communication systems puts forward a new requirement for beam splitters to efficiently transmit microwave signals and simultaneously reflect optical signals. Owing to mechanical constraints, the physical thickness of beam splitters is of the order of tens of millimeters. The corresponding electrical thickness has the same order of magnitude as microwave wavelengths, and the resulting multi-beam interference effect significantly reduces the microwave transmittance, impacting the beam splitting quality.This study presents a new optics/microwave beam splitter based on the ability of the frequency selective surface(FSS) to shape the resonant curve. A beam splitter sample,whose physical thickness and substrate material are 20 mm and quartz glass, respectively, is designed, simulated, fabricated, and characterized to validate the feasibility of this strategy. The measured results show that the minimum microwave transmittance between 35 and 36.5 GHz with an incidence angle of 45° under TE polarization is 86.43%, and the mean value of the reflectance spectra from 450 to 900 nm and that from 7.7 to 10.5 μm both exceed 96%. This FSS-based optics/microwave beam splitter is expected to play a key role in hybrid optics/microwave communication systems.展开更多
In this work,a simple fabrication method of germanium-based metasurfaces is proposed,where the deposited Al_(2)O_(3) layer with high selectivity is chosen as the hard mask and retained after the dry etching process.Th...In this work,a simple fabrication method of germanium-based metasurfaces is proposed,where the deposited Al_(2)O_(3) layer with high selectivity is chosen as the hard mask and retained after the dry etching process.The simulation and experimental characterization results verify the feasibility of the fabrication method.The experimental study on the fabrication methods of germanium-based metasurfaces is very significant as the meta-atoms with a higher refractive index can achieve 0 to 2πtransmission phase variation with a smaller period under the same thickness-to-period ratio,which is consistent with the requirement of the period miniaturization in some cases.展开更多
Transparent absorbers, with a functional integration of broadband electromagnetic shielding, microwave camouflage,and optical transparency, have attracted increasing attention in the past decades. Metal mesh, an artif...Transparent absorbers, with a functional integration of broadband electromagnetic shielding, microwave camouflage,and optical transparency, have attracted increasing attention in the past decades. Metal mesh, an artificial, optically transparent, conducting material composed of periodic metallic gratings, is the optimal choice for the microwave shielding layer of transparent absorbers because of its excellent compatibility between high transparency and low resistance. However, the micrometer-level periodicity of metallic grating concentrates the diffraction of light, which degrades the imaging quality of cameras and sensors in common. In this study, we report on a generalized Thiessenpolygon-randomization method that prevents the concentration of the diffraction of light in periodic metallic grating and demonstrate an ultrawide-band optically transparent diffraction-immune metamaterial absorber. The absorber is constructed with a multilayer indium-tin-oxide-based metasurface and a Thiessen-polygon-randomized metal-mesh reflector. The lossy metasurface provides multimode absorption, whereas the Thiessen-polygon randomization prevents the concentration of the diffraction of light. The practical sample achieves a 10 dB absorptivity and shielding effectiveness over a range of 8–26.5 GHz, and the optical transparency is also preserved over the entire visible and near-infrared regions. The point spread function and field of view are both improved by using the antidiffraction absorber. Our study paves the way for the application of optically transparent electromagnetic devices, display, and optoelectronic integration in a more practical stage. ? 2023 Chinese Laser Press.展开更多
基金supported by the National Natural Science Foundation of China (No.61901437)。
文摘The development of hybrid optics/microwave communication systems puts forward a new requirement for beam splitters to efficiently transmit microwave signals and simultaneously reflect optical signals. Owing to mechanical constraints, the physical thickness of beam splitters is of the order of tens of millimeters. The corresponding electrical thickness has the same order of magnitude as microwave wavelengths, and the resulting multi-beam interference effect significantly reduces the microwave transmittance, impacting the beam splitting quality.This study presents a new optics/microwave beam splitter based on the ability of the frequency selective surface(FSS) to shape the resonant curve. A beam splitter sample,whose physical thickness and substrate material are 20 mm and quartz glass, respectively, is designed, simulated, fabricated, and characterized to validate the feasibility of this strategy. The measured results show that the minimum microwave transmittance between 35 and 36.5 GHz with an incidence angle of 45° under TE polarization is 86.43%, and the mean value of the reflectance spectra from 450 to 900 nm and that from 7.7 to 10.5 μm both exceed 96%. This FSS-based optics/microwave beam splitter is expected to play a key role in hybrid optics/microwave communication systems.
基金supported by the National Natural Science Foundation of China(No.12204478).
文摘In this work,a simple fabrication method of germanium-based metasurfaces is proposed,where the deposited Al_(2)O_(3) layer with high selectivity is chosen as the hard mask and retained after the dry etching process.The simulation and experimental characterization results verify the feasibility of the fabrication method.The experimental study on the fabrication methods of germanium-based metasurfaces is very significant as the meta-atoms with a higher refractive index can achieve 0 to 2πtransmission phase variation with a smaller period under the same thickness-to-period ratio,which is consistent with the requirement of the period miniaturization in some cases.
基金National Natural Science Foundation of China (61901437, 62175083, 61935015)Fundamental Research Funds for the Central UniversitiesNatural Science Foundation of Jilin Province (20230101359JC)。
文摘Transparent absorbers, with a functional integration of broadband electromagnetic shielding, microwave camouflage,and optical transparency, have attracted increasing attention in the past decades. Metal mesh, an artificial, optically transparent, conducting material composed of periodic metallic gratings, is the optimal choice for the microwave shielding layer of transparent absorbers because of its excellent compatibility between high transparency and low resistance. However, the micrometer-level periodicity of metallic grating concentrates the diffraction of light, which degrades the imaging quality of cameras and sensors in common. In this study, we report on a generalized Thiessenpolygon-randomization method that prevents the concentration of the diffraction of light in periodic metallic grating and demonstrate an ultrawide-band optically transparent diffraction-immune metamaterial absorber. The absorber is constructed with a multilayer indium-tin-oxide-based metasurface and a Thiessen-polygon-randomized metal-mesh reflector. The lossy metasurface provides multimode absorption, whereas the Thiessen-polygon randomization prevents the concentration of the diffraction of light. The practical sample achieves a 10 dB absorptivity and shielding effectiveness over a range of 8–26.5 GHz, and the optical transparency is also preserved over the entire visible and near-infrared regions. The point spread function and field of view are both improved by using the antidiffraction absorber. Our study paves the way for the application of optically transparent electromagnetic devices, display, and optoelectronic integration in a more practical stage. ? 2023 Chinese Laser Press.