Probes for in vivo imaging of hypochlorous acid(HOCl),one of the most important reactive oxygen species in innate immunity,are urgently needed to understand the pathogenesis of autoimmune and neuroinflammatory disorde...Probes for in vivo imaging of hypochlorous acid(HOCl),one of the most important reactive oxygen species in innate immunity,are urgently needed to understand the pathogenesis of autoimmune and neuroinflammatory disorders.As a strong oxidant,HOCl could bleach near-infrared sensors and inactivate luciferase readily,making in vivo imaging overwhelmingly challenging.Via fine-tuning of a selective HOCl sensing moiety,HOCl stable spacer,and bright chemiluminescent scaffold,we have developed HOCl-CL-510 as a highly selective and sensitive probe for HOCl detection both in vitro and in vivo.In particular,we achieved recurring real-time monitoring of HOCl in both acute and chronic inflammation models in living mice,providing a new chemical tool for dynamic monitoring of disease development with reduced usage of experimental animals.展开更多
基金supported by The University of Hong Kong,Morningside Foundation,Hong Kong Research Grants Council Area of Excellence Scheme(grant no.AoE/P-705/16 to D.Y.)National Natural Science Foundation of China(grant no.21961142011 to D.Y.)the Israel Science Foundation-China Joint Funding Program.
文摘Probes for in vivo imaging of hypochlorous acid(HOCl),one of the most important reactive oxygen species in innate immunity,are urgently needed to understand the pathogenesis of autoimmune and neuroinflammatory disorders.As a strong oxidant,HOCl could bleach near-infrared sensors and inactivate luciferase readily,making in vivo imaging overwhelmingly challenging.Via fine-tuning of a selective HOCl sensing moiety,HOCl stable spacer,and bright chemiluminescent scaffold,we have developed HOCl-CL-510 as a highly selective and sensitive probe for HOCl detection both in vitro and in vivo.In particular,we achieved recurring real-time monitoring of HOCl in both acute and chronic inflammation models in living mice,providing a new chemical tool for dynamic monitoring of disease development with reduced usage of experimental animals.