AIM:To quantify cumulative effective dose of intensive care unit(ICU)patients attributable to diagnostic imaging.METHODS:This was a prospective,interdisciplinary study conducted in the ICU of a large tertiary referral...AIM:To quantify cumulative effective dose of intensive care unit(ICU)patients attributable to diagnostic imaging.METHODS:This was a prospective,interdisciplinary study conducted in the ICU of a large tertiary referral and level 1 trauma center.Demographic and clinical data including age,gender,date of ICU admission,primary reason for ICU admission,APACHE Ⅱ score,length of stay,number of days intubated,date of death or discharge,and re-admission data was collected on all patients admitted over a 1-year period.The overall radiation exposure was quantified by the cumulative effective radiation dose(CED)in millisieverts(mS v)and calculated using reference effective doses published by the United Kingdom National Radiation Protection Board.Pediatric patients were selected for subgroupanalysis.RESULTS:A total of 2737 studies were performedin 421 patients.The total CED was 1704 m Sv with a median CED of 1.5 mS v(IQR 0.04-6.6 mS v).Total CED in pediatric patients was 74.6 mS v with a median CED of 0.07 mS v(IQR 0.01-4.7 mS v).Chest radiography was the most commonly performed examination accounting for 83% of all studies but only 2.7% of total CED.Computed tomography(CT)accounted for 16% of all studies performed and contributed 97% of total CED.Trauma patients received a statistically significant higher dose [median CED 7.7 mS v(IQR 3.5-13.8 mS v)] than medical [median CED 1.4 m Sv(IQR 0.05-5.4 m Sv)] and surgical [median CED 1.6 mS v(IQR 0.04-7.5 mS v)] patients.Length of stay in ICU [OR = 1.12(95%CI:1.079-1.157)] was identified as an independent predictor of receiving a CED greater than 15 mS v.CONCLUSION:Trauma patients and patients with extended ICU admission times are at increased risk of higher CEDs.CED should be minimized where feasible,especially in young patients.展开更多
文摘AIM:To quantify cumulative effective dose of intensive care unit(ICU)patients attributable to diagnostic imaging.METHODS:This was a prospective,interdisciplinary study conducted in the ICU of a large tertiary referral and level 1 trauma center.Demographic and clinical data including age,gender,date of ICU admission,primary reason for ICU admission,APACHE Ⅱ score,length of stay,number of days intubated,date of death or discharge,and re-admission data was collected on all patients admitted over a 1-year period.The overall radiation exposure was quantified by the cumulative effective radiation dose(CED)in millisieverts(mS v)and calculated using reference effective doses published by the United Kingdom National Radiation Protection Board.Pediatric patients were selected for subgroupanalysis.RESULTS:A total of 2737 studies were performedin 421 patients.The total CED was 1704 m Sv with a median CED of 1.5 mS v(IQR 0.04-6.6 mS v).Total CED in pediatric patients was 74.6 mS v with a median CED of 0.07 mS v(IQR 0.01-4.7 mS v).Chest radiography was the most commonly performed examination accounting for 83% of all studies but only 2.7% of total CED.Computed tomography(CT)accounted for 16% of all studies performed and contributed 97% of total CED.Trauma patients received a statistically significant higher dose [median CED 7.7 mS v(IQR 3.5-13.8 mS v)] than medical [median CED 1.4 m Sv(IQR 0.05-5.4 m Sv)] and surgical [median CED 1.6 mS v(IQR 0.04-7.5 mS v)] patients.Length of stay in ICU [OR = 1.12(95%CI:1.079-1.157)] was identified as an independent predictor of receiving a CED greater than 15 mS v.CONCLUSION:Trauma patients and patients with extended ICU admission times are at increased risk of higher CEDs.CED should be minimized where feasible,especially in young patients.