Based on the data of cloud cover, precipitation, temperature, sunshine hours and relative humidity from nine ground meteorological stations in Heze region in the southwest of Shandong Province from 1961 to 2012, chang...Based on the data of cloud cover, precipitation, temperature, sunshine hours and relative humidity from nine ground meteorological stations in Heze region in the southwest of Shandong Province from 1961 to 2012, changes of total and low cloud cover and its relationship with climatic factors associated in the southwest of Shandong Province in recent 52 years were analyzed. The results showed that average total cloud cover in- creased by 0.89%/10 a, but average low cloud cover decreased by 1.1%/10 a in Heze region in recent 52 years. The positive correlation between the average total cloud cover and temperature in autumn and winter was obvious, that is, when cloud cover increased by 10%, the average temper- ature increased by 0.48 ~C in autumn and increased by 0.83~(3 in winter. The average low. cloud cover negatively correlated with the average tam- perature in each season, and the negative correlation was very significant in spring. When cloud cover increased by 10%, the average temperature decreased by 1.49 ~C. The positive correlation between the average cloud cover and average precipitation was significant. The annual precipitation increased by 148.1 mm when annual mean total cloud cover increased by 10%. When seasonal mean cloud cover increased by 10%, the precipita- tion increased by 48.4, 107.1,55.4 and 12.2 mm in spring, summer, autumn and winter respectively. The annual average total cloud cover and low cloud cover had significantly positive correlation with 〉~0.1, ~〉1.0, ~〉10 and ~〉25 mm precipitation days respectively. The sunshine hours were seriously influenced by cloud cover, and when cloud cover increased by 10%, the sunshine hours decreased by 54.5 h in spring, 134.2 h in sum- mer, 154.3 h in autumn and 60.6 h in winter. The total cloud cover significantly positively correlated with relative humidity in summer and autumn, and when cloud cover increased by 10%, the relative humidity increased by 3.3% in summer and 4.1% in autumn.展开更多
基金Supported by the Scientific Research Foundation for Young Scholars of Shandong Meteorological Bureau
文摘Based on the data of cloud cover, precipitation, temperature, sunshine hours and relative humidity from nine ground meteorological stations in Heze region in the southwest of Shandong Province from 1961 to 2012, changes of total and low cloud cover and its relationship with climatic factors associated in the southwest of Shandong Province in recent 52 years were analyzed. The results showed that average total cloud cover in- creased by 0.89%/10 a, but average low cloud cover decreased by 1.1%/10 a in Heze region in recent 52 years. The positive correlation between the average total cloud cover and temperature in autumn and winter was obvious, that is, when cloud cover increased by 10%, the average temper- ature increased by 0.48 ~C in autumn and increased by 0.83~(3 in winter. The average low. cloud cover negatively correlated with the average tam- perature in each season, and the negative correlation was very significant in spring. When cloud cover increased by 10%, the average temperature decreased by 1.49 ~C. The positive correlation between the average cloud cover and average precipitation was significant. The annual precipitation increased by 148.1 mm when annual mean total cloud cover increased by 10%. When seasonal mean cloud cover increased by 10%, the precipita- tion increased by 48.4, 107.1,55.4 and 12.2 mm in spring, summer, autumn and winter respectively. The annual average total cloud cover and low cloud cover had significantly positive correlation with 〉~0.1, ~〉1.0, ~〉10 and ~〉25 mm precipitation days respectively. The sunshine hours were seriously influenced by cloud cover, and when cloud cover increased by 10%, the sunshine hours decreased by 54.5 h in spring, 134.2 h in sum- mer, 154.3 h in autumn and 60.6 h in winter. The total cloud cover significantly positively correlated with relative humidity in summer and autumn, and when cloud cover increased by 10%, the relative humidity increased by 3.3% in summer and 4.1% in autumn.