This paper consider the penalized least squares estimators with convex penalties or regularization norms.We provide sparsity oracle inequalities for the prediction error for a general convex penalty and for the partic...This paper consider the penalized least squares estimators with convex penalties or regularization norms.We provide sparsity oracle inequalities for the prediction error for a general convex penalty and for the particular cases of Lasso and Group Lasso estimators in a regression setting.The main contribution is that our oracle inequalities are established for the more general case where the observations noise is issued from probability measures that satisfy a weak spectral gap(or Poincaré)inequality instead of Gaussian distributions.We illustrate our results on a heavy tailed example and a sub Gaussian one;we especially give the explicit bounds of the oracle inequalities for these two special examples.展开更多
基金This work has been(partially)supported by the Project EFI ANR-17-CE40-0030 of the French National Research Agency.
文摘This paper consider the penalized least squares estimators with convex penalties or regularization norms.We provide sparsity oracle inequalities for the prediction error for a general convex penalty and for the particular cases of Lasso and Group Lasso estimators in a regression setting.The main contribution is that our oracle inequalities are established for the more general case where the observations noise is issued from probability measures that satisfy a weak spectral gap(or Poincaré)inequality instead of Gaussian distributions.We illustrate our results on a heavy tailed example and a sub Gaussian one;we especially give the explicit bounds of the oracle inequalities for these two special examples.