期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Preparation and thermoelectric properties of Cu1.8S/CuSbS2 composites 被引量:2
1
作者 Chunmei TANG doudou liang +2 位作者 Hezhang LI Kun LUO Boping ZHANG 《Journal of Advanced Ceramics》 SCIE CSCD 2019年第2期209-217,共9页
Chalcostibite(CuSbS2)is composed of earth-abundant elements and has a proper band gap(Eg=1.05 eV)as a thermoelectric(TE)material.Herein,we report the TE properties in the CuSbS2 based composites with a mole ratio of(1... Chalcostibite(CuSbS2)is composed of earth-abundant elements and has a proper band gap(Eg=1.05 eV)as a thermoelectric(TE)material.Herein,we report the TE properties in the CuSbS2 based composites with a mole ratio of(1–x)CuSbS2–x Cu1.8S(x=0,0.1,0.2,0.3),which were prepared by mechanical alloying(MA)combined with spark plasma sintering(SPS).X-ray diffraction(XRD)and back-scattered electron image(BSE)results indicate that a single phase of CuSbS2 is synthesized at x=0 and the samples consist of CuSbS2,Cu3SbS4,and Cu12Sb4S13 at 0.1≤x≤0.3.The correlation between the phase structure,microstructure,and TE transport properties of the bulk samples is established.The electrical conductivity increases from 0.14 to 50.66 S·cm–1 at 723 K and at0≤x≤0.03,while the Seebeck coefficient holds an appropriate value of 190.51μV·K–1.The highest ZT value of 0.17 is obtained at 723 K and at x=0.3 owing to the combination of a high PF183μW·m–1·K–2 and a lowκ0.8 W·m–1·K–1. 展开更多
关键词 CuSbS2 PHASE structure ZT THERMOELECTRIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部