Concrete structures are some of the largest constructions in human civilization.Their manufacture releases CO_(2)into atmosphere,which is partially readsorbed by standing structures,and further release occurs when the...Concrete structures are some of the largest constructions in human civilization.Their manufacture releases CO_(2)into atmosphere,which is partially readsorbed by standing structures,and further release occurs when they are demolished.Concrete is chemically similar to basaltic minerals,both adsorb CO_(2)where they are exposed on the earth's surface.Sequestration of CO_(2)is beneficial to reduce atmospheric concentrations,and thus limit future temperature increases.Therefore,multiple options are being examined for CO_(2)sequestration.For the first time,we compare the CO_(2)sequestration capacity of these two materials.We review previous work quantifying CO_(2)sequestration capacity of both materials and for the first time,compare their potential quantitative roles.Costs of that are compiled,to the extent they have been examined.Costly grinding of these materials to small particle sizes accelerates CO_(2)sequestration,and mycorrhizae in agricultural soils might reduce the associated costs.Both these materials can improve nutrient status in agricultural soils,and limit acidification from external nitrogen fertilization.Limitations are discussed in terms of land-use and material availability,and soil pH conditions.We call for further experiments with these materials that compare CO_(2)sequestration and other biogeochemical processes in agricultural systems across climates,carried out especially where such materials are conveniently available.展开更多
Insects first began evolving hundreds of millions of years ago,and aided by gut microbes,they have been consuming hydrocarbon polymers ever since.Few man-made plastic polymers are chemically novel,so it is reasonable ...Insects first began evolving hundreds of millions of years ago,and aided by gut microbes,they have been consuming hydrocarbon polymers ever since.Few man-made plastic polymers are chemically novel,so it is reasonable that insect/microbe systems can be found or developed to degrade them rapidly.However,remediation of global plastic waste problems should involve more than just conversion into CO_(2).Some industryscale microbial enzymatic degradation of plastic polymers may yield valuable monomers,but the plastic waste starting material must be of uniform chemistry and clean.This adds cost to the process.Many insect species can be utilized for animal feed as well as human food.Some of these insects have the capability to degrade plastic polymers.However,valorizing plastic wastes by producing edible insects or useful frass has largely been overlooked.Here we assemble the current knowledge of plastic degradation rates by insects.In addition,we also show the first instance of insect degradation of polyurethane and the first identification and isolation of insect gut fungi as directly aiding insect degradation.展开更多
Arbuscular mycorrhizal fungi(AMF)provide benefits to most crop species via enhanced nutrient uptake,increased drought and abiotic stress resistance,and reduced effects of pathogens and pests.Much remains unclear regar...Arbuscular mycorrhizal fungi(AMF)provide benefits to most crop species via enhanced nutrient uptake,increased drought and abiotic stress resistance,and reduced effects of pathogens and pests.Much remains unclear regarding the specific mechanisms influencing these processes,and the critical roles of AMF are often overlooked in planning agroecological systems.There is growing consensus,however,around the important roles AMF play in improving plant resilience and crop yield while also enhancing the functioning of soil microbial communities.Heterogeneous practices across all scales complicate the successful integration of AMF in agroecological systems.AMF symbioses with crops are passive,or stimulated by incorporation of crop wastes in soil,soil inoculation with AMF spores,or the planting inoculated of seeds.Here we suggest that AMF can have highest beneficial impacts in areas with low levels of agrochemical inputs.We argue that areas with intensive agrochemical inputs can also be made more sustainable with AMF enhancements.展开更多
基金supported by the National Natural Science Foundation of China(NSFC Grant No.32001296)the Youth Innovation Promotion Association of CAS,China(Grant No.2022396),and Chinese Academy of Sciences President's International Fellowship Initiative.
文摘Concrete structures are some of the largest constructions in human civilization.Their manufacture releases CO_(2)into atmosphere,which is partially readsorbed by standing structures,and further release occurs when they are demolished.Concrete is chemically similar to basaltic minerals,both adsorb CO_(2)where they are exposed on the earth's surface.Sequestration of CO_(2)is beneficial to reduce atmospheric concentrations,and thus limit future temperature increases.Therefore,multiple options are being examined for CO_(2)sequestration.For the first time,we compare the CO_(2)sequestration capacity of these two materials.We review previous work quantifying CO_(2)sequestration capacity of both materials and for the first time,compare their potential quantitative roles.Costs of that are compiled,to the extent they have been examined.Costly grinding of these materials to small particle sizes accelerates CO_(2)sequestration,and mycorrhizae in agricultural soils might reduce the associated costs.Both these materials can improve nutrient status in agricultural soils,and limit acidification from external nitrogen fertilization.Limitations are discussed in terms of land-use and material availability,and soil pH conditions.We call for further experiments with these materials that compare CO_(2)sequestration and other biogeochemical processes in agricultural systems across climates,carried out especially where such materials are conveniently available.
基金Key Research Program of the Ministry of Sciences and Technology(Grant No.2017YFC0505101)of ChinaChinese Academy of Sciences,President’s International Fellowship Initiative(CAS-PIFI),Grant No.2019PC0011,2017PC0035+7 种基金Key Research Program of Frontier Sciences,CAS,Grant No.QYZDY-SSW-SMC014We thank the National Science Foundation of China(NSFC)for funding this work under the project codes Y4ZK111B01,41761144055,3181101433,41771063,31650410651,41761144055 and 31550110215We are thankful to Zhijia Gu,Key Laboratories for Plant Diversity and Biogeography of East China,Kunming Institute of Botany,Chinese Academy of Sciences for scanning electron microscopy.G.G.O.Dossa thanks China Postdoctoral Foundation Grant No.2017M613021the young international staff Chinese Academy of Sciences(CAS)president international fellowship initiative(PIFI)grants#2019FYB0001 and 2017PC0035Heng Gui would thank the CPSF-CAS Joint Foundation for Excellent Postdoctoral Fellows(Grant No.2017LH029)the China Postdoctoral Science Foundation(Grant No.2018M633435)the 2018 Yunnan Province Postdoctoral Science Research Foundation.Heng Gui would also like to thank the support from the Human Resources and Social Security Department of Yunnan Province,German Academic Exchange Service(DAAD)under the program:Research Stays for University Academics and Scientists,2018(Ref.No.91691203)the China Scholarship Council under the State Scholarship Fund(Ref.No.201804910259).
文摘Insects first began evolving hundreds of millions of years ago,and aided by gut microbes,they have been consuming hydrocarbon polymers ever since.Few man-made plastic polymers are chemically novel,so it is reasonable that insect/microbe systems can be found or developed to degrade them rapidly.However,remediation of global plastic waste problems should involve more than just conversion into CO_(2).Some industryscale microbial enzymatic degradation of plastic polymers may yield valuable monomers,but the plastic waste starting material must be of uniform chemistry and clean.This adds cost to the process.Many insect species can be utilized for animal feed as well as human food.Some of these insects have the capability to degrade plastic polymers.However,valorizing plastic wastes by producing edible insects or useful frass has largely been overlooked.Here we assemble the current knowledge of plastic degradation rates by insects.In addition,we also show the first instance of insect degradation of polyurethane and the first identification and isolation of insect gut fungi as directly aiding insect degradation.
基金Ministry of Sciences and Technology of China 2017YFC0505101,NSFC-CGIAR 31861143002Yunnan Provincial Science and Technology Department 202003AD150004+3 种基金PEM thanks the National Science Foundation of China for financial support from grants 41761144055 and 41771063HG was supported by Yunnan Fundamental Research Projects(2019FB063)NSFC Grant 32001296Austin Smith substantially clarified our presentation.
文摘Arbuscular mycorrhizal fungi(AMF)provide benefits to most crop species via enhanced nutrient uptake,increased drought and abiotic stress resistance,and reduced effects of pathogens and pests.Much remains unclear regarding the specific mechanisms influencing these processes,and the critical roles of AMF are often overlooked in planning agroecological systems.There is growing consensus,however,around the important roles AMF play in improving plant resilience and crop yield while also enhancing the functioning of soil microbial communities.Heterogeneous practices across all scales complicate the successful integration of AMF in agroecological systems.AMF symbioses with crops are passive,or stimulated by incorporation of crop wastes in soil,soil inoculation with AMF spores,or the planting inoculated of seeds.Here we suggest that AMF can have highest beneficial impacts in areas with low levels of agrochemical inputs.We argue that areas with intensive agrochemical inputs can also be made more sustainable with AMF enhancements.