Here we investigate the ocean-atmosphere coupling and the contribution of the Sea Surface Temperature (SST) variations in: 1) Brazil-Malvinas Confluence (BMC) region, 2) Southwest Atlantic Ocean and 3) Southern Brazil...Here we investigate the ocean-atmosphere coupling and the contribution of the Sea Surface Temperature (SST) variations in: 1) Brazil-Malvinas Confluence (BMC) region, 2) Southwest Atlantic Ocean and 3) Southern Brazil. Numerical simulations of the ECHAM5/MPI-OM coupled ocean-atmosphere model were used to analyze the changes in the seasonal trajectory of the extratropical cyclones, in terms of intensification of physical mechanisms and implications for future scenarios. The numerical experiment for the future scenario considered an atmospheric CO2 concentration of approximately 770 ppm, which represents an increment of more than 350 ppm over the current values recorded by the Mauna Loa reference station. For this scenario, the results indicated a Storm Tracks (ST) displacement of 5° latitude toward south and changes of the meridional transport of sensible heat, close to 50°S. The increase in SST induces ST intensification and consequently an increase in the occurrence of extratropical cyclones. Overall, in the BMC region, we found a change in the pattern of cyclogenetic activity occurrence, with less frequent, but more intense events. On the Southern Brazilian region, the results of this study indicate increases in rainfall during summer months, whereas, a decrease in frequency and an increase in intensity were found for wintertime. We suggest that these changes could impact the climate dynamic of the Brazilian South coast, with a magnitude yet unknown.展开更多
Brazil is responsible for 27% of the world production of soybeans and 7% of maize. Mato Grosso and Para states in Brazil are among the largest producer. The viability to the cultivation of maize (Zea mays) and soybean...Brazil is responsible for 27% of the world production of soybeans and 7% of maize. Mato Grosso and Para states in Brazil are among the largest producer. The viability to the cultivation of maize (Zea mays) and soybeans (Glycine max), for future climate scenarios (2070-2100, GHG) is evaluated based on crop modeling (DSSAT) forced by observational data and regional climate simulations (HadRM3). The results demonstrated that a substantial reduction in the yield in particular for maize may be expected for the end of the 21st century. Distinct results are found for soybeans. By applying the A2 climate changes scenario, soybean yield rises by up top 60% assuming optimum soil treatment and no water stress. However, by analyzing the inter-annual variability of crop yields for both maize and soybean, could be demonstrated larger year-to-year fluctuations under greenhouse warming conditions as compared to current conditions, leading to very low productivity by the end of the 21st century. Therefore, these Brazilian states do not appear to be economically suitable for a future cultivation of maize and soybeans. Improved adaptation measures and soil management may however partially alleviate the negative climate change effect.展开更多
文摘Here we investigate the ocean-atmosphere coupling and the contribution of the Sea Surface Temperature (SST) variations in: 1) Brazil-Malvinas Confluence (BMC) region, 2) Southwest Atlantic Ocean and 3) Southern Brazil. Numerical simulations of the ECHAM5/MPI-OM coupled ocean-atmosphere model were used to analyze the changes in the seasonal trajectory of the extratropical cyclones, in terms of intensification of physical mechanisms and implications for future scenarios. The numerical experiment for the future scenario considered an atmospheric CO2 concentration of approximately 770 ppm, which represents an increment of more than 350 ppm over the current values recorded by the Mauna Loa reference station. For this scenario, the results indicated a Storm Tracks (ST) displacement of 5° latitude toward south and changes of the meridional transport of sensible heat, close to 50°S. The increase in SST induces ST intensification and consequently an increase in the occurrence of extratropical cyclones. Overall, in the BMC region, we found a change in the pattern of cyclogenetic activity occurrence, with less frequent, but more intense events. On the Southern Brazilian region, the results of this study indicate increases in rainfall during summer months, whereas, a decrease in frequency and an increase in intensity were found for wintertime. We suggest that these changes could impact the climate dynamic of the Brazilian South coast, with a magnitude yet unknown.
基金This study has been sponsored by the National Institute of Science and Technology Climate Change and by the SoCoCA project funded by the Research Council of Norway(contract 190159)Moreover support has been provided by the sub-rede Agricultura do MCTI and by the INCT-Mudanças Climáticas.
文摘Brazil is responsible for 27% of the world production of soybeans and 7% of maize. Mato Grosso and Para states in Brazil are among the largest producer. The viability to the cultivation of maize (Zea mays) and soybeans (Glycine max), for future climate scenarios (2070-2100, GHG) is evaluated based on crop modeling (DSSAT) forced by observational data and regional climate simulations (HadRM3). The results demonstrated that a substantial reduction in the yield in particular for maize may be expected for the end of the 21st century. Distinct results are found for soybeans. By applying the A2 climate changes scenario, soybean yield rises by up top 60% assuming optimum soil treatment and no water stress. However, by analyzing the inter-annual variability of crop yields for both maize and soybean, could be demonstrated larger year-to-year fluctuations under greenhouse warming conditions as compared to current conditions, leading to very low productivity by the end of the 21st century. Therefore, these Brazilian states do not appear to be economically suitable for a future cultivation of maize and soybeans. Improved adaptation measures and soil management may however partially alleviate the negative climate change effect.