FT-IR spectrometry, TPD and adsorption isotherms of thiophene on NaY/NiY zeolites were carried out and the diffusion coefficient was obtained by means of its real-time dynamic curves. The loading of thiophene adsorbed...FT-IR spectrometry, TPD and adsorption isotherms of thiophene on NaY/NiY zeolites were carried out and the diffusion coefficient was obtained by means of its real-time dynamic curves. The loading of thiophene adsorbed on the NaY zeolite decreased with an increasing temperature, which was ascribed to the patterns of physical adsorption. Both physical and chemical adsorption phenomena were detected on the NiY zeolite, with the 0 complexation and S-M interaction existing during the chemical adsorption. The loading of thiophene adsorbed on the NiY zeolite at 302 K and 335 K was equal, but it decreased at 373 K. The diffusion coefficient of thiophene on the NaY zeolite decreased when the loading increased to more than 0.02 mmol/g, and on the contrary that of thiophene on the NiY zeolite did not change obviously with the loading adsorbed.展开更多
文摘FT-IR spectrometry, TPD and adsorption isotherms of thiophene on NaY/NiY zeolites were carried out and the diffusion coefficient was obtained by means of its real-time dynamic curves. The loading of thiophene adsorbed on the NaY zeolite decreased with an increasing temperature, which was ascribed to the patterns of physical adsorption. Both physical and chemical adsorption phenomena were detected on the NiY zeolite, with the 0 complexation and S-M interaction existing during the chemical adsorption. The loading of thiophene adsorbed on the NiY zeolite at 302 K and 335 K was equal, but it decreased at 373 K. The diffusion coefficient of thiophene on the NaY zeolite decreased when the loading increased to more than 0.02 mmol/g, and on the contrary that of thiophene on the NiY zeolite did not change obviously with the loading adsorbed.