为了获取信息完整的深度图以提高预测深度图的质量,解决单目深度估计模型中特征融合的问题,提出一种融合多尺度和不同层特征的双流神经网络模型。该模型采用ResNet-50残差网络结构提取深度特征信息,利用金字塔结构融合不同层次的图像特...为了获取信息完整的深度图以提高预测深度图的质量,解决单目深度估计模型中特征融合的问题,提出一种融合多尺度和不同层特征的双流神经网络模型。该模型采用ResNet-50残差网络结构提取深度特征信息,利用金字塔结构融合不同层次的图像特征,实现低层、中层和高层的特征融合,保证不同层次特征的有效互补,改善多层间特征信息的传递,在一定程度上避免了信息的遗漏和缺失。在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)数据集上进行试验,结果表明,该模型的均方根误差为2.3704,对数均方根误差为0.229,平均对数误差为0.118,阈值精度分别为0.686、0.951、0.977,实现了较好的评测结果。展开更多
文摘为了获取信息完整的深度图以提高预测深度图的质量,解决单目深度估计模型中特征融合的问题,提出一种融合多尺度和不同层特征的双流神经网络模型。该模型采用ResNet-50残差网络结构提取深度特征信息,利用金字塔结构融合不同层次的图像特征,实现低层、中层和高层的特征融合,保证不同层次特征的有效互补,改善多层间特征信息的传递,在一定程度上避免了信息的遗漏和缺失。在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)数据集上进行试验,结果表明,该模型的均方根误差为2.3704,对数均方根误差为0.229,平均对数误差为0.118,阈值精度分别为0.686、0.951、0.977,实现了较好的评测结果。