Porous Y2Si05 ceramic was fabricated by freeze casting with tert-butyl alcohol as solvent. The porous Y2SiO5 ceramic possessed long straight pore structure. With decreasing solid loading from 20 to 10 vol.%, the poros...Porous Y2Si05 ceramic was fabricated by freeze casting with tert-butyl alcohol as solvent. The porous Y2SiO5 ceramic possessed long straight pore structure. With decreasing solid loading from 20 to 10 vol.%, the porosity of the Y2SiO5 ceramic increased linearly from 45% to Y2%, while the compressive strength declined from 23.2 to 3.2 MPa. The thermal conductivity of Y2SiO5 decreased from 2.34 W/mK for the dense bulk to 0.05 W/mK for the porous body with a porosity of 57%.展开更多
The stable operation of electronic devices in marine atmospheric environment is affected by the corrosion deterioration of solder joints,and the effects by atmosphere temperature and chloride deposition are critical.I...The stable operation of electronic devices in marine atmospheric environment is affected by the corrosion deterioration of solder joints,and the effects by atmosphere temperature and chloride deposition are critical.In this work,NaCl deposition and temperature dependent corrosion of Pb-free SAC305 solder in simulated marine atmosphere has been investigated.The results indicate that higher NaCl deposition prolongs the surface wetting time and leads to the final thicker saturated electrolyte film for further corrosion.Higher temperature accelerates the evaporation and contributes to the final thinner saturated NaCl electrolyte film.Besides,the corrosion control process varies under the initially covered thicker NaCl electrolyte layer and under the final saturated much thinner NaCl electrolyte film as the evaporation proceeds.Moreover,the ready oxygen availability through the final thinner saturated NaCl electrolyte film facilitates the formation of corrosion product layer mainly of electrochemically stable SnO2,but higher temperature leads to the final corrosion product layer with smaller crystal size and large cracks.The findings clearly demonstrate the effects of NaCl deposition and temperature on corrosion evolution of SAC305 solder joints and are critical to the daily maintenance of electronic devices for longer service life in marine atmosphere.展开更多
文摘Porous Y2Si05 ceramic was fabricated by freeze casting with tert-butyl alcohol as solvent. The porous Y2SiO5 ceramic possessed long straight pore structure. With decreasing solid loading from 20 to 10 vol.%, the porosity of the Y2SiO5 ceramic increased linearly from 45% to Y2%, while the compressive strength declined from 23.2 to 3.2 MPa. The thermal conductivity of Y2SiO5 decreased from 2.34 W/mK for the dense bulk to 0.05 W/mK for the porous body with a porosity of 57%.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51601057 and 51701038)and the Marine Science Special Project of Hebei Normal University of Science&Technology(No.2018HY004),and the authors acknowledge the assistance.
文摘The stable operation of electronic devices in marine atmospheric environment is affected by the corrosion deterioration of solder joints,and the effects by atmosphere temperature and chloride deposition are critical.In this work,NaCl deposition and temperature dependent corrosion of Pb-free SAC305 solder in simulated marine atmosphere has been investigated.The results indicate that higher NaCl deposition prolongs the surface wetting time and leads to the final thicker saturated electrolyte film for further corrosion.Higher temperature accelerates the evaporation and contributes to the final thinner saturated NaCl electrolyte film.Besides,the corrosion control process varies under the initially covered thicker NaCl electrolyte layer and under the final saturated much thinner NaCl electrolyte film as the evaporation proceeds.Moreover,the ready oxygen availability through the final thinner saturated NaCl electrolyte film facilitates the formation of corrosion product layer mainly of electrochemically stable SnO2,but higher temperature leads to the final corrosion product layer with smaller crystal size and large cracks.The findings clearly demonstrate the effects of NaCl deposition and temperature on corrosion evolution of SAC305 solder joints and are critical to the daily maintenance of electronic devices for longer service life in marine atmosphere.