In this paper,we study a boundedness property of the Adams type for multilinear fractional integral operators with the multilinear L^(r′,α)-Hörmander condition and their commutators with vector valued BMO funct...In this paper,we study a boundedness property of the Adams type for multilinear fractional integral operators with the multilinear L^(r′,α)-Hörmander condition and their commutators with vector valued BMO functions on a Morrey space and a predual Morrey space.Moreover,we give an endpoint estimate for multilinear fractional integral operators.As an application,we obtain the boundedness of multilinear Fourier multipliers with limited Sobolev regularity on a Morrey space.展开更多
In this paper, we establish two weighted integral inequalities for commutators of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this kind of commutator, denoted by H^ab, is bounded...In this paper, we establish two weighted integral inequalities for commutators of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this kind of commutator, denoted by H^ab, is bounded from L^Pxy (R+) to L^qxδ (R+) with the bound explicitly worked out.展开更多
Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be poin...Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be pointed out that we con- sider whole ranges of p and q, i.e., 0 〈 p ≤∞ and 0 〈 q ≤∞.展开更多
In this paper, we establish two integral inequalities for Hardy operator's conjugate operator at the endpoint on n-dimensional space. The operator Hn is bounded from Lxα1 (Gn) to Lxβq (Gn) with the bound explic...In this paper, we establish two integral inequalities for Hardy operator's conjugate operator at the endpoint on n-dimensional space. The operator Hn is bounded from Lxα1 (Gn) to Lxβq (Gn) with the bound explicitly worked out and the similar result holds for Hn*.展开更多
In this paper,we consider the boundedness of multilinear Littlewood-Paley operators which include multilinear g-function,multilinear Lusin's area integral and multilinear Littlewood-Paley g^*λ-function.Furthermor...In this paper,we consider the boundedness of multilinear Littlewood-Paley operators which include multilinear g-function,multilinear Lusin's area integral and multilinear Littlewood-Paley g^*λ-function.Furthermore,norm inequalities of the above operators hold on the corresponding Amalgam-Campanato spaces.展开更多
In this paper,we calculate the sharp bound for the generalized m-linear n-dimensional Hardy-Littlewood-Polya operator on power weighted central and non-central homogeneous Morrey spaces.As an application,the sharp bou...In this paper,we calculate the sharp bound for the generalized m-linear n-dimensional Hardy-Littlewood-Polya operator on power weighted central and non-central homogeneous Morrey spaces.As an application,the sharp bound for the Hardy-Littlewood-Polya operator on power weighted central and noncentral homo-geneous Morrey spaces is obtained.Finally,we also find the sharp bound for the Hausdorff operator on power weighted central and noncentral homogeneous Morrey spaces,which generalizes the previous results.展开更多
In this paper,we establish the strong and weak boundedness of the multilinear maximal operator in the setting of the Choquet integral with respect to theαdimensional Hausdorff content.Our results cover Orobitg and Ve...In this paper,we establish the strong and weak boundedness of the multilinear maximal operator in the setting of the Choquet integral with respect to theαdimensional Hausdorff content.Our results cover Orobitg and Verdera’s results in[8].展开更多
We will prove that for 1<p<∞and 0<λ<n,the central Morrey norm of the truncated centered Hardy-Littlewood maximal operator Mcγequals that of the centered Hardy-Littlewood maximal operator for all 0<γ...We will prove that for 1<p<∞and 0<λ<n,the central Morrey norm of the truncated centered Hardy-Littlewood maximal operator Mcγequals that of the centered Hardy-Littlewood maximal operator for all 0<γ<+∞.When p=1 and 0<λ<n,it turns out that the weak central Morrey norm of the truncated centered Hardy-Littlewood maximal operator Mcγequals that of the centered Hardy-Littlewood maximal operator for all 0<λ<+∞.Moreover,the same results are true for the truncated uncentered Hardy-Littlewood maximal operator.Our work extends the previous results of Lebesgue spaces to Morrey spaces.展开更多
We consider the oscillatory integral operator Ta,mf(X) f(y)dy, where the function f is a Schwartz function.In this paper, the restriction theorem on Sn-1 for this operator is obtained. Moreover, we obtain a necess...We consider the oscillatory integral operator Ta,mf(X) f(y)dy, where the function f is a Schwartz function.In this paper, the restriction theorem on Sn-1 for this operator is obtained. Moreover, we obtain a necessary condition which ensures validity of the restriction theorem.展开更多
We introduce a space DHH =D(R2) H2H1D(R2), where D(R2) is the testing function space whose functions are infinitely differentiable and have bounded support, and H2H1D(R2) is the space the double Hilbert tra...We introduce a space DHH =D(R2) H2H1D(R2), where D(R2) is the testing function space whose functions are infinitely differentiable and have bounded support, and H2H1D(R2) is the space the double Hilbert transform acting on the testing function space. We prove that the double Hilbert transform is a homeomorphism from DHH onto itself.展开更多
In this paper, we obtain the L^p decay of oscillatory integral operators T_λ with certain homogeneous polynomial phase functions of degree d in(n + n)-dimensions; we require that d > 2 n. If d/(d-n) < p < d/...In this paper, we obtain the L^p decay of oscillatory integral operators T_λ with certain homogeneous polynomial phase functions of degree d in(n + n)-dimensions; we require that d > 2 n. If d/(d-n) < p < d/n,the decay is sharp and the decay rate is related to the Newton distance. For p = d/n or d/(d-n), we obtain the almost sharp decay, where "almost" means that the decay contains a log(λ) term. For otherwise, the L^p decay of T_λ is also obtained but not sharp. Finally, we provide a counterexample to show that d/(d-n) p d/n is not necessary to guarantee the sharp decay.展开更多
基金supported by National Natural Science Foundation of China(11871452,12071473)the Beijing Information Science and Technology University Foundation(2025031)。
文摘In this paper,we study a boundedness property of the Adams type for multilinear fractional integral operators with the multilinear L^(r′,α)-Hörmander condition and their commutators with vector valued BMO functions on a Morrey space and a predual Morrey space.Moreover,we give an endpoint estimate for multilinear fractional integral operators.As an application,we obtain the boundedness of multilinear Fourier multipliers with limited Sobolev regularity on a Morrey space.
基金Supported in part by the Natural Science Foundation of China under the Grant 10771221Natural Science Foundation of Beijing under the Grant 1092004
文摘In this paper, we establish two weighted integral inequalities for commutators of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this kind of commutator, denoted by H^ab, is bounded from L^Pxy (R+) to L^qxδ (R+) with the bound explicitly worked out.
基金supported in part by National Natural Foundation of China (Grant Nos. 11071250 and 11271162)
文摘Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be pointed out that we con- sider whole ranges of p and q, i.e., 0 〈 p ≤∞ and 0 〈 q ≤∞.
基金Supported in part by the Natural Science Foundation of China under grant 11071250 and 11271162
文摘In this paper, we establish two integral inequalities for Hardy operator's conjugate operator at the endpoint on n-dimensional space. The operator Hn is bounded from Lxα1 (Gn) to Lxβq (Gn) with the bound explicitly worked out and the similar result holds for Hn*.
基金Supported in part by the Natural Science Foundation of China(11471309 and 11561062)。
文摘In this paper,we consider the boundedness of multilinear Littlewood-Paley operators which include multilinear g-function,multilinear Lusin's area integral and multilinear Littlewood-Paley g^*λ-function.Furthermore,norm inequalities of the above operators hold on the corresponding Amalgam-Campanato spaces.
基金supported by National Natural Science Foundation of China (Grant No.11871452)Beijing Information Science and Technology University Foundation (Grant No.2025031)+1 种基金Natural Science Foundation of Henan Province (Grant No.202300410338)the Nanhu Scholar Program for Young Scholars of Xinyang Normal University.
文摘In this paper,we calculate the sharp bound for the generalized m-linear n-dimensional Hardy-Littlewood-Polya operator on power weighted central and non-central homogeneous Morrey spaces.As an application,the sharp bound for the Hardy-Littlewood-Polya operator on power weighted central and noncentral homo-geneous Morrey spaces is obtained.Finally,we also find the sharp bound for the Hausdorff operator on power weighted central and noncentral homogeneous Morrey spaces,which generalizes the previous results.
基金supported by the National Natural Science Foundation of China (Grant Nos.11871452 and 12071473)Beijing Information Science and Technology University Foundation (Grant No.2025031).
文摘In this paper,we establish the strong and weak boundedness of the multilinear maximal operator in the setting of the Choquet integral with respect to theαdimensional Hausdorff content.Our results cover Orobitg and Verdera’s results in[8].
基金the National Natural Science Foundation of China(Grant No.11871452)the Project of Henan Provincial Department of Education(No.18A110028)the Nanhu Scholar Program for Young Scholars of XYNU.
文摘We will prove that for 1<p<∞and 0<λ<n,the central Morrey norm of the truncated centered Hardy-Littlewood maximal operator Mcγequals that of the centered Hardy-Littlewood maximal operator for all 0<γ<+∞.When p=1 and 0<λ<n,it turns out that the weak central Morrey norm of the truncated centered Hardy-Littlewood maximal operator Mcγequals that of the centered Hardy-Littlewood maximal operator for all 0<λ<+∞.Moreover,the same results are true for the truncated uncentered Hardy-Littlewood maximal operator.Our work extends the previous results of Lebesgue spaces to Morrey spaces.
文摘We consider the oscillatory integral operator Ta,mf(X) f(y)dy, where the function f is a Schwartz function.In this paper, the restriction theorem on Sn-1 for this operator is obtained. Moreover, we obtain a necessary condition which ensures validity of the restriction theorem.
基金This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11071250, 11271162, 11126149).
文摘We introduce a space DHH =D(R2) H2H1D(R2), where D(R2) is the testing function space whose functions are infinitely differentiable and have bounded support, and H2H1D(R2) is the space the double Hilbert transform acting on the testing function space. We prove that the double Hilbert transform is a homeomorphism from DHH onto itself.
基金supported by National Natural Science Foundation of China (Grant Nos. 11471309, 11271162 and 11561062)
文摘In this paper, we obtain the L^p decay of oscillatory integral operators T_λ with certain homogeneous polynomial phase functions of degree d in(n + n)-dimensions; we require that d > 2 n. If d/(d-n) < p < d/n,the decay is sharp and the decay rate is related to the Newton distance. For p = d/n or d/(d-n), we obtain the almost sharp decay, where "almost" means that the decay contains a log(λ) term. For otherwise, the L^p decay of T_λ is also obtained but not sharp. Finally, we provide a counterexample to show that d/(d-n) p d/n is not necessary to guarantee the sharp decay.