Municipal solid waste (MSW) and its disposal are gaining significant importance in geotechnical and geoenvironmental engineering. However, conventional research is primarily focused on fresh MSW or MSW that is compa...Municipal solid waste (MSW) and its disposal are gaining significant importance in geotechnical and geoenvironmental engineering. However, conventional research is primarily focused on fresh MSW or MSW that is compacted under its own weight in the landfill. In this work, a series of tests to study the properties of a densified MSW after ground treatment were presented. The tests involved oedometer test, simple shear test, triaxial shear test, and permeability test, which were conducted to investigate the compressibility, shear strength, creep behavior and permeability of the MSW. The results show that the compressibility modulus of the MSW increases as the dry density increases. However, the influence of density on modulus decreases once the density reaches a certain value. Like most soils, the stress-strain curve of the densified MSW can be approximated by a hyperbola in the triaxial shear test. Fibrous components provide additional cohesion for MSW, but have a relatively smaller effect on friction angle. Permeability is also found to be closely related to the dry density of the MSW, i.e., MSW with a higher dry density has a smaller permeability. The permeability coefficient may be less than 10 7 cm/s if the density is high enough.展开更多
Mesenchymal stem cells(MSCs)have demonstrated significant therapeutic potential in heart failure(HF)treatment.However,their clinical application is impeded by low retention rate and low cellular activity of MSCs cause...Mesenchymal stem cells(MSCs)have demonstrated significant therapeutic potential in heart failure(HF)treatment.However,their clinical application is impeded by low retention rate and low cellular activity of MSCs caused by high inflammatory and reactive oxygen species(ROS)microenvironment.In this study,monascus pigment(MP)nanoparticle(PPM)was proposed for improving adverse microenvironment and assisting in transplantation of bone marrow-derived MSCs(BMSCs).Meanwhile,in order to load PPM and reduce the mechanical damage of BMSCs,injectable hydrogels based on Schiff base cross-linking were prepared.The PPM displays ROS-scavenging and macrophage phenotype-regulating capabilities,significantly enhancing BMSCs survival and activity in HF microenvironment.This hydrogel demonstrates superior biocompatibility,injectability,and tissue adhesion.With the synergistic effects of injectable,adhesive hydrogel and the microenvironment-modulating properties of MP,cardiac function was effectively improved in the pericardial sac of rats.Our results offer insights into advancing BMSCs-based HF therapies and their clinical applications.展开更多
基金Foundation item: Project(50979047) supported by the National Natural Science Foundation of China Project(2010CB732103) supported by the National Basic Research Program of China Project(2012-KY-02) supported by the State Key Laboratory of Hydroscience and Engineering (Tsinghua University), China
文摘Municipal solid waste (MSW) and its disposal are gaining significant importance in geotechnical and geoenvironmental engineering. However, conventional research is primarily focused on fresh MSW or MSW that is compacted under its own weight in the landfill. In this work, a series of tests to study the properties of a densified MSW after ground treatment were presented. The tests involved oedometer test, simple shear test, triaxial shear test, and permeability test, which were conducted to investigate the compressibility, shear strength, creep behavior and permeability of the MSW. The results show that the compressibility modulus of the MSW increases as the dry density increases. However, the influence of density on modulus decreases once the density reaches a certain value. Like most soils, the stress-strain curve of the densified MSW can be approximated by a hyperbola in the triaxial shear test. Fibrous components provide additional cohesion for MSW, but have a relatively smaller effect on friction angle. Permeability is also found to be closely related to the dry density of the MSW, i.e., MSW with a higher dry density has a smaller permeability. The permeability coefficient may be less than 10 7 cm/s if the density is high enough.
基金supported by the National Natural Science Foundation of China(81900339,82072072,32261160372)The Third People’s Hospital of Chengdu First-Class Incubation Project(CSY-YN-01-2023-003)+3 种基金Special Funding for Postdoctoral Research in Sichuan Province(2023TB095)The Fundamental Research Funds for the Central Universities(2682022TPY052)Chengdu Medical Research Project(2022138)the Natural Science Foundation of Tibet Autonomous Region Grant number(XZ202201ZR0036G).
文摘Mesenchymal stem cells(MSCs)have demonstrated significant therapeutic potential in heart failure(HF)treatment.However,their clinical application is impeded by low retention rate and low cellular activity of MSCs caused by high inflammatory and reactive oxygen species(ROS)microenvironment.In this study,monascus pigment(MP)nanoparticle(PPM)was proposed for improving adverse microenvironment and assisting in transplantation of bone marrow-derived MSCs(BMSCs).Meanwhile,in order to load PPM and reduce the mechanical damage of BMSCs,injectable hydrogels based on Schiff base cross-linking were prepared.The PPM displays ROS-scavenging and macrophage phenotype-regulating capabilities,significantly enhancing BMSCs survival and activity in HF microenvironment.This hydrogel demonstrates superior biocompatibility,injectability,and tissue adhesion.With the synergistic effects of injectable,adhesive hydrogel and the microenvironment-modulating properties of MP,cardiac function was effectively improved in the pericardial sac of rats.Our results offer insights into advancing BMSCs-based HF therapies and their clinical applications.