The existing estimates of the volume transport from the Pacific Ocean to the South China Sea are summarized, showing an annual mean westward transport, with the Taiwan Strait outflow subtracted, of 3.5±2.0 Sv (1...The existing estimates of the volume transport from the Pacific Ocean to the South China Sea are summarized, showing an annual mean westward transport, with the Taiwan Strait outflow subtracted, of 3.5±2.0 Sv (1 Sv=-0^6 ma s^-1). Results of a global ocean circulation model show an annual mean transport of 3.9 Sv from the Pacific to the Indian Ocean through the South China Sea. The boreal winter transport is larger and exhibits a South China Sea branch of the Pacific-to-Indian Ocean throughflow, which originates from the western Philippine Sea toward the Indonesian Seas through the South China Sea, as well as through the Karimata and Mindoro Straits. The southwestward current near the continental slope of the northern South China Sea is shown to be a combination of this branch and the interior circulation gyre. This winter branch can be confirmed by trajectories of satellite-tracked drifters, which clearly show a flow from the Luzon Strait to the Karimata Strait in winter. In summer, the flow in the Karimata Strait is reversed. Numerical model results indicate that the Pacific water can enter the South China Sea and exit toward the Sulu Sea, but no observational evidence is available. The roles of the throughiiow branch in the circulation, water properties and air-sea exchange of the South China Sea, and in enhancing and regulating the volume transport and reducing the heat transport of the Indonesian Throughflow, are discussed.展开更多
The objective of this study was to examine the phytochemical components, antioxidant activity and antibacterial property of ethyl acetate extract of the stem bark of garlic tree (Scorodocarpus borneensis). The dried...The objective of this study was to examine the phytochemical components, antioxidant activity and antibacterial property of ethyl acetate extract of the stem bark of garlic tree (Scorodocarpus borneensis). The dried stem bark of S. borneensis were collected and homogenized after drying at room temperature (32℃) for 30 d. The stem barks were extracted by macerated method using 95% ethanol and then fractionated with ethyl acetate. The dried ethyl acetate extract was subjected to phytoehemical screening to determine the presence of bioactive components using gas chromatography-mass spectrometry (GC-MS). Antioxidant activity of the extract in vitro was examined by 2,2-diphenyl-l-picryl-hydrazyl (DPPH) radical scavenging assay. The antibacterial activity against gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli was performed by disc diffusion assay. GCMS results revealed the presence of 14 different phytocompounds, viz, tetratriacontyl trifluoroacetate (41.61%), 2-pentanone (13.65%), oxacyclotetradecane-2,11-done (7.87%), cinnamic acid (7.53%), 10-octadecanoic acid (6.50%), 1,2-benzeno dicarboxylix acid (4.99%), octadecanoic acid (4.51%), hexadecanoic acid (4.16%), beta tumerone (3.01%), 9-octadecenoic acid (1.70%), tricosanol (1.38%), hexadecano-phenone (1.36%), 1-nonadecanol (0.93%) and n-nonadecanol (0.82%). In vitro antioxidant activity (IC50) was found at 55.524 ppm as high powerful. The results of agar diffusion method showed that the ethyl acetate extracts had an antibacterial activity of 6.687 ± 0.800 mm againts S. aureus at 10% (w/v) and 7.500 ± 0.735 mm against E. coli at 10% (w/v) as moderate category. These findings suggest that S. borneensis stem bark is a valuable sources of bioactive compounds with promising as antioxidant and antibacterial sources.展开更多
基金the National Science Foundation of China through Grants Nos.40520140074,40136010(for G.Fang),40476016(for Z.Wei)partly supported by The National Science Foundation(U.S.A)through Grant OCE-02-19782 and ONR Grants Nos.014041.0698,014051—0272(for R.D.Susanto)partly supported b oNR through Grants 040611-8331,050303-7499(for Q.Zheng).
文摘The existing estimates of the volume transport from the Pacific Ocean to the South China Sea are summarized, showing an annual mean westward transport, with the Taiwan Strait outflow subtracted, of 3.5±2.0 Sv (1 Sv=-0^6 ma s^-1). Results of a global ocean circulation model show an annual mean transport of 3.9 Sv from the Pacific to the Indian Ocean through the South China Sea. The boreal winter transport is larger and exhibits a South China Sea branch of the Pacific-to-Indian Ocean throughflow, which originates from the western Philippine Sea toward the Indonesian Seas through the South China Sea, as well as through the Karimata and Mindoro Straits. The southwestward current near the continental slope of the northern South China Sea is shown to be a combination of this branch and the interior circulation gyre. This winter branch can be confirmed by trajectories of satellite-tracked drifters, which clearly show a flow from the Luzon Strait to the Karimata Strait in winter. In summer, the flow in the Karimata Strait is reversed. Numerical model results indicate that the Pacific water can enter the South China Sea and exit toward the Sulu Sea, but no observational evidence is available. The roles of the throughiiow branch in the circulation, water properties and air-sea exchange of the South China Sea, and in enhancing and regulating the volume transport and reducing the heat transport of the Indonesian Throughflow, are discussed.
文摘The objective of this study was to examine the phytochemical components, antioxidant activity and antibacterial property of ethyl acetate extract of the stem bark of garlic tree (Scorodocarpus borneensis). The dried stem bark of S. borneensis were collected and homogenized after drying at room temperature (32℃) for 30 d. The stem barks were extracted by macerated method using 95% ethanol and then fractionated with ethyl acetate. The dried ethyl acetate extract was subjected to phytoehemical screening to determine the presence of bioactive components using gas chromatography-mass spectrometry (GC-MS). Antioxidant activity of the extract in vitro was examined by 2,2-diphenyl-l-picryl-hydrazyl (DPPH) radical scavenging assay. The antibacterial activity against gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli was performed by disc diffusion assay. GCMS results revealed the presence of 14 different phytocompounds, viz, tetratriacontyl trifluoroacetate (41.61%), 2-pentanone (13.65%), oxacyclotetradecane-2,11-done (7.87%), cinnamic acid (7.53%), 10-octadecanoic acid (6.50%), 1,2-benzeno dicarboxylix acid (4.99%), octadecanoic acid (4.51%), hexadecanoic acid (4.16%), beta tumerone (3.01%), 9-octadecenoic acid (1.70%), tricosanol (1.38%), hexadecano-phenone (1.36%), 1-nonadecanol (0.93%) and n-nonadecanol (0.82%). In vitro antioxidant activity (IC50) was found at 55.524 ppm as high powerful. The results of agar diffusion method showed that the ethyl acetate extracts had an antibacterial activity of 6.687 ± 0.800 mm againts S. aureus at 10% (w/v) and 7.500 ± 0.735 mm against E. coli at 10% (w/v) as moderate category. These findings suggest that S. borneensis stem bark is a valuable sources of bioactive compounds with promising as antioxidant and antibacterial sources.