期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Glass and Mineral Chemistry of Northern Central Indian Ridge Basalts:Compositional Diversity and Petrogenetic Significance 被引量:2
1
作者 dwijesh ray Ranadip BANERJEE +2 位作者 Sridhar D IYER Basavaraju BASAVALINGU Subir MUKHOPADHYAY4 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第6期1122-1135,共14页
The glass and mineral chemistry of basaits examined from the northern central Indian ridge (NCIR) provides an insight into magma genesis around the vicinity of two transform faults: Vityaz (VT) and Vema (VM). T... The glass and mineral chemistry of basaits examined from the northern central Indian ridge (NCIR) provides an insight into magma genesis around the vicinity of two transform faults: Vityaz (VT) and Vema (VM). The studied mid-ocean ridge basalts (MORBs) from the outer ridge flank (VT area) and a near-ridge seamount (VM area) reveal that they are moderately phyric plagioclase basalts composed of plagioclase (phenocryst [An60-90] and groundmass [An35-79]), olivine (Fo81-88), diopside (Wo45-51, En25-37, Fs14-24), and titanomagnetite (FeOt -63.75 wt% and TiO2 -22.69 wt%). The wholerock composition of these basalts has similar Mg# [mole Mg/mole(Mg+Fe2+)] (VT basalt: -0.56-0.58; VM basalt: -0.57), but differ in their total alkali content (VT basalt: -2.65; VM basalt: -3.24). The bulk composition of the magma was gradually depleted in MgO and enriched in FeOt, TiO2, P2O5, and Na2O with progressive fractionation, the basalts were gradually enriched in Y and Zr and depleted in Ni and Cr. In addition, the ∑REE of magma also increased with fractionation, without any change in the (La/ Yb)N value. Glass from the VM seamount shows more fractionated characters (Mg#: 0.56-0.57) compared to the outer ridge flank lava of the VT area (Mg#: 0.63-0.65). This study concludes that present basalts experienced low-pressure crystallization at a relatively shallow depth. The geochemical changes in the NCIR magmas resulted from fractional crystallization at a shallow depth. As a consequence, spinel was the first mineral to crystallize at a pressure 〉10 kbar, followed by Fe-rich olivine at 〈10 kbar pressure. 展开更多
关键词 mineral chemistry fractional crystallization PETROGENESIS northern central Indian ridge
下载PDF
A New Report of Serpentinites from Northern Central Indian Ridge(at 6°S)—An Implication for Hydrothermal Activity 被引量:1
2
作者 dwijesh ray Ranadip BANERJEE +1 位作者 Sridhar D.IYER Subir MUKHOPADHYAY 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第6期1213-1222,共10页
Serpentinites from the inside corner high (6°38.5′S/68°19.34′E) from the Northern Central Indian Ridge (NCIR) are comprised mainly of high Mg-rich lizardite and chrysotile pseudomorphs with varying mor... Serpentinites from the inside corner high (6°38.5′S/68°19.34′E) from the Northern Central Indian Ridge (NCIR) are comprised mainly of high Mg-rich lizardite and chrysotile pseudomorphs with varying morphologies. 'Mesh rim', 'window', 'hourglass' and 'bastite' are the most common textures displayed by both chrysotile and lizardite. Numerous chrysotile veins in association with cross cutting magnetite veins indicate an advanced stage of serpentinisation. The relatively high abundance of chrysotile and lizardite suggest their close association and formation at a temperature below 250℃. Abundant 'mesh rim' and 'bastite' texture and variegated matrix reveal that the present serpentinites might have formed due to the interaction of harzburgite and seawater. Positive Eu anomaly (Eu/Eu^* up to +3.38), higher La/Sm (up to 4.40) and Nb/La (up to 6.34) ratios suggest substantial hydrothermal influence during the formation of the serpentinites. 展开更多
关键词 SERPENTINITE serpentinisation hydrothermal alteration
下载PDF
A Petrogenetic Model of Basalts from the Northern Central Indian Ridge:3-11°S
3
作者 dwijesh ray Sridhar D. IYER +2 位作者 Ranadip BANERJEE Saumitra MISRA M. WIDDOWSON 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第1期99-112,共14页
Mid-Ocean Ridge Basalts (MORB) from the Northern Central Indian Ridge (NCIR) were recovered between latitudes 3° and 11° S and are olivine tholeiite with higher abundances of K and Rb. They are of typica... Mid-Ocean Ridge Basalts (MORB) from the Northern Central Indian Ridge (NCIR) were recovered between latitudes 3° and 11° S and are olivine tholeiite with higher abundances of K and Rb. They are of typical transitional MORB (T-MORB) variety and appear to have been generated from an enriched-mantle peridotite source. The primitive NCIR MORBs having Mg^# 〉 0.68 are the product of partial melting at an estimated pressure of - 1 GPa. It is inferred that the magma was subsequently modified at a pressure 〉 1 GPa by crystal fractionation and spinel was the first mineral to crystallize followed by separation of relatively Fe-rich olivine with subsequent decrease in pressure. During progressive fractionation at lower pressure (between 1-0.5 GPa), the bulk composition of the magma became systematically depleted in MgO, and enriched in ∑FeO, TiO2, P2Os and Na20. There was, however, limited gradual depletion in Al2O3 and CaO and concomitant enrichment in K20. With the progressive fractionation these basalts became gradually enriched in V, Co, Y, Zr and to some extent in Sr, and depleted in Ni and Cro In addition, the T_JtEE of the magma also increased with fractionation, without any change in (La/Yb)n value. 展开更多
关键词 MORB NCIR GEOCHEMISTRY PETROGENESIS Indian Ocean mid-ocean ridge
下载PDF
Spectral characteristics of banded iron formations in Singhbhum craton,eastern India:Implications for hematite deposits on Mars
4
作者 Mahima Singh Jayant Singhal +3 位作者 K.Arun Prasad V.J.Rajesh dwijesh ray Priyadarshi Sahoo 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第6期927-936,共10页
Banded iron formations (BIFs) are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environm... Banded iron formations (BIFs) are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environment, hematite deposits are mainly found associated with banded iron formations. The BIFs in Lake Superior (Canada) and Carajas (Brazil) have been studied by planetary scientists to trace the evolution of hematite deposits on Mars. Hematite deposits are extensively identified in Meridiani region on Mars. Many hypotheses have been proposed to decipher the mechanism for the formation of these deposits. On the basis of geomorphological and mineralogical studies, aqueous environment of deposition is found to be the most supportive mechanism for its secondary iron rich deposits. In the present study, we examined the spectral characteristics of banded iron formations of Joda and Daitari located in Singhbhum craton in eastern India to check its potentiality as an analog to the aqueous/marine environment on Mars. The prominent banding feature of banded iron formations is in the range of few millimeters to few centimeters in thickness. Fe rich bands are darker (gray) in color compared to the light reddish jaspilitic chert bands. Thin quartz veins (〈4 mm) are occasionally observed in the handspecimens of banded iron formations. Spectral investigations have been conducted in VIS/NIR region of electromagnetic spectrum in the laboratory conditions. Optimum absorption bands identified include 0.65, 0.86, 1.4 and 1.9 μm, in which 0.56 and 0.86 μm absorption bands are due to ferric iron and 1.4 and 1,9 μm bands are due to OH/H2O. To validate the mineralogical results obtained from VlS/NIR spectral radiometry, laser Raman and Fourier transform infrared spectroscopic techniques were utilized and the results were found to be similar. Goethite-hematite association in banded iron formation in Singhbhum craton suggests dehydration activity, which has altered the primary iron oxide phases into the secondary iron oxide phases. The optimum bands identified for the minerals using various spectroscopic techniques can be used as reference for similar mineral deposits on any remote area on Earth or on other hydrated planetary surfaces like Mars. 展开更多
关键词 Banded iron formation Singhbhum craton VIS/NIR spectroscopy Raman spectroscopy Terrestrial analog Mars
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部