This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The curre...This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The current state of wind turbine generators are discussed and compared in some criteria along with the trends in the current WECS market, which are ‘Variable Speed’, ‘Multi-MW’ and ‘Offshore’. In addition, the other crucial component in the WECS, PECs will be discussed with its topologies available in the current WECS market along with their modulation strategies. Moreover, three main issues of the WECS associating with the grid-connection, fault-ride through (FRT) capability, harmonics/interharmonics emission and flicker, which are the power quality issues, will be discussed due to the increasing responsibility of WECS as utility power station. Some key findings from the review such as the attractiveness of BDFRG are presented in the conclusion of this paper.展开更多
Modern electric power systems have increased the usage of switching power converters.These tightly regulated switching power converters behave as constant power loads(CPLs).They exhibit a negative incremental impedanc...Modern electric power systems have increased the usage of switching power converters.These tightly regulated switching power converters behave as constant power loads(CPLs).They exhibit a negative incremental impedance in small signal analysis.This negative impedance degrades the stability margin of the interaction between CPLs and their feeders,which is known as the negative impedance instability problem.The feeder can be an LC input filter or an upstream switching converter.Active damping methods are preferred for the stabilization of the system.This is due to their higher power efficiency over passive damping methods.Based on different sources of damping effect,this paper summarizes and classifies existing active damping methods into three categories.The paper further analyzes and compares the advantages and disadvantages of each active damping method.展开更多
文摘This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The current state of wind turbine generators are discussed and compared in some criteria along with the trends in the current WECS market, which are ‘Variable Speed’, ‘Multi-MW’ and ‘Offshore’. In addition, the other crucial component in the WECS, PECs will be discussed with its topologies available in the current WECS market along with their modulation strategies. Moreover, three main issues of the WECS associating with the grid-connection, fault-ride through (FRT) capability, harmonics/interharmonics emission and flicker, which are the power quality issues, will be discussed due to the increasing responsibility of WECS as utility power station. Some key findings from the review such as the attractiveness of BDFRG are presented in the conclusion of this paper.
文摘Modern electric power systems have increased the usage of switching power converters.These tightly regulated switching power converters behave as constant power loads(CPLs).They exhibit a negative incremental impedance in small signal analysis.This negative impedance degrades the stability margin of the interaction between CPLs and their feeders,which is known as the negative impedance instability problem.The feeder can be an LC input filter or an upstream switching converter.Active damping methods are preferred for the stabilization of the system.This is due to their higher power efficiency over passive damping methods.Based on different sources of damping effect,this paper summarizes and classifies existing active damping methods into three categories.The paper further analyzes and compares the advantages and disadvantages of each active damping method.