Effective lambda-proton and lambda-neutron potentials,restored from theoretical scattering phases through Gel'fand–Levitan–Marchenko theory,are tested on a lambda hypertriton through three-body calculations.The ...Effective lambda-proton and lambda-neutron potentials,restored from theoretical scattering phases through Gel'fand–Levitan–Marchenko theory,are tested on a lambda hypertriton through three-body calculations.The lambda hypertriton is treated as a three-body system consisting of lambda-proton,lambda-neutron and proton–neutron subsystems.Binding energy and root mean square radius are computed for the ground state of lambda hypertriton(Jp=12+).In coordinate space,the dynamics of the system is described using a set of coupled hyperradial equations obtained from the differential Faddeev equations.By solving the eigenvalue problem derived from this set of coupled hyperradial equations,the binding energy and root mean square matter radius computed are found to be-2.462 MeV and 7.00 fm,respectively.The potentials are also shown to display a satisfactory convergence behaviour.展开更多
文摘Effective lambda-proton and lambda-neutron potentials,restored from theoretical scattering phases through Gel'fand–Levitan–Marchenko theory,are tested on a lambda hypertriton through three-body calculations.The lambda hypertriton is treated as a three-body system consisting of lambda-proton,lambda-neutron and proton–neutron subsystems.Binding energy and root mean square radius are computed for the ground state of lambda hypertriton(Jp=12+).In coordinate space,the dynamics of the system is described using a set of coupled hyperradial equations obtained from the differential Faddeev equations.By solving the eigenvalue problem derived from this set of coupled hyperradial equations,the binding energy and root mean square matter radius computed are found to be-2.462 MeV and 7.00 fm,respectively.The potentials are also shown to display a satisfactory convergence behaviour.